精英家教网 > 高中数学 > 题目详情
2.设函数$f(x)=\frac{1}{3}a{x^3}+\frac{1}{2}b{x^2}+cx$(a,b,c∈R,a≠0)的图象在点(x,f(x))处的切线的斜率为k(x),且函数$g(x)=k(x)-\frac{1}{2}x$为偶函数.若函数k(x)满足下列条件:①k(-1)=0;②对一切实数x,不等式$k(x)≤\frac{1}{2}{x^2}+\frac{1}{2}$恒成立.
(1)求函数k(x)的表达式;
(2)设函数$h(x)=ln{x^2}-(2m+3)x+\frac{12f(x)}{x}$(x>0)的两个极值点x1,x2(x1<x2)恰为φ(x)=lnx-sx2-tx的零点,当$m≥\frac{{3\sqrt{2}}}{2}$时,求$y=({x_1}-{x_2})φ'(\frac{{{x_1}+{x_2}}}{2})$的最小值.

分析 (1)由已知可得k(x)=f′(x)=ax2+bx+c,由函数$g(x)=k(x)-\frac{1}{2}x$为偶函数,g(-x)=g(x)恒成立,解得b=$\frac{1}{2}$.又k(-1)=0,可得a+c=$\frac{1}{2}$,由对一切实数x,不等式$k(x)≤\frac{1}{2}{x^2}+\frac{1}{2}$恒成立.可得(a-$\frac{1}{2}$)x2+$\frac{1}{2}$x+c-$\frac{1}{2}≤$0恒成立,因此$\left\{\begin{array}{l}{a-\frac{1}{2}<0}\\{△=\frac{1}{4}-4(a-\frac{1}{2})(c-\frac{1}{2})≤0}\end{array}\right.$,解出即可得出.
(2)由(1)得,f(x)=$\frac{1}{12}{x}^{3}$+$\frac{1}{4}$x2+$\frac{1}{4}$x,可得h(x)=2lnx+x2+3-2mx(x>0),h′(x)=$\frac{2}{x}$+2x-2m=$\frac{2({x}^{2}-mx+1)}{x}$,由题意得$\left\{\begin{array}{l}{△={m}^{2}-4>0}\\{{x}_{1}+{x}_{2}=m}\\{{x}_{1}{x}_{2}=1}\end{array}\right.$,又$m≥\frac{{3\sqrt{2}}}{2}$,可得$0<\frac{{x}_{1}}{{x}_{2}}≤\frac{1}{2}$,由x1,x2(x1<x2)恰为φ(x)=lnx-sx2-tx的零点,代入两式相减得,ln$\frac{{x}_{1}}{{x}_{2}}$-s(x1-x2)(x1+x2)-t(x1-x2)=0,代入$y=({x_1}-{x_2})φ'(\frac{{{x_1}+{x_2}}}{2})$=$\frac{2(\frac{{x}_{1}}{{x}_{2}}-1)}{\frac{{x}_{1}}{{x}_{2}}+1}$--ln$\frac{{x}_{1}}{{x}_{2}}$.设n=$\frac{{x}_{1}}{{x}_{2}}$($0<n≤\frac{1}{2}$),y=$\frac{2(n-1)}{n+1}$-lnn($0<n≤\frac{1}{2}$),记为M(n),利用导数研究其单调性极值与最值即可得出.

解答 解:(1)由已知可得k(x)=f′(x)=ax2+bx+c,
∵函数$g(x)=k(x)-\frac{1}{2}x$为偶函数,∴g(-x)=k(-x)-$\frac{1}{2}$(-x)=k(x)-$\frac{1}{2}$x,
即ax2-bx+c+$\frac{1}{2}$x=ax2+bx+c-$\frac{1}{2}$x恒成立,所以b=$\frac{1}{2}$.
又k(-1)=0,∴$a-\frac{1}{2}$+c=0,即a+c=$\frac{1}{2}$,
又∵对一切实数x,不等式$k(x)≤\frac{1}{2}{x^2}+\frac{1}{2}$恒成立.
∴(a-$\frac{1}{2}$)x2+$\frac{1}{2}$x+c-$\frac{1}{2}≤$0恒成立,
∴$\left\{\begin{array}{l}{a-\frac{1}{2}<0}\\{△=\frac{1}{4}-4(a-\frac{1}{2})(c-\frac{1}{2})≤0}\end{array}\right.$,
∴a=c=$\frac{1}{4}$,∴k(x)=$\frac{1}{4}$x2+$\frac{1}{2}$x+$\frac{1}{4}$.
(2)由(1)得,f(x)=$\frac{1}{12}{x}^{3}$+$\frac{1}{4}$x2+$\frac{1}{4}$x,
∴h(x)=2lnx+x2+3-2mx(x>0),
h′(x)=$\frac{2}{x}$+2x-2m=$\frac{2({x}^{2}-mx+1)}{x}$,
由题意得$\left\{\begin{array}{l}{△={m}^{2}-4>0}\\{{x}_{1}+{x}_{2}=m}\\{{x}_{1}{x}_{2}=1}\end{array}\right.$,又$m≥\frac{{3\sqrt{2}}}{2}$,
∴m2=$\frac{({x}_{1}+{x}_{2})^{2}}{{x}_{1}{x}_{2}}$≥$\frac{9}{2}$,解得$0<\frac{{x}_{1}}{{x}_{2}}≤\frac{1}{2}$,
∵x1,x2(x1<x2)恰为φ(x)=lnx-sx2-tx的零点,
∴φ(x1)=lnx1-s${x}_{1}^{2}$-tx1=0,φ(x2)=lnx2-$s{x}_{2}^{2}$-tx2=0,
两式相减得,ln$\frac{{x}_{1}}{{x}_{2}}$-s(x1-x2)(x1+x2)-t(x1-x2)=0,又φ′(x)=$\frac{1}{x}$-2sx-t,
从而$y=({x_1}-{x_2})φ'(\frac{{{x_1}+{x_2}}}{2})$=(x1-x2)$[\frac{2}{{x}_{1}+{x}_{2}}-s({x}_{1}+{x}_{2})-t]$=$\frac{2({x}_{1}-{x}_{2})}{{x}_{1}+{x}_{2}}$-ln$\frac{{x}_{1}}{{x}_{2}}$=$\frac{2(\frac{{x}_{1}}{{x}_{2}}-1)}{\frac{{x}_{1}}{{x}_{2}}+1}$--ln$\frac{{x}_{1}}{{x}_{2}}$.
设n=$\frac{{x}_{1}}{{x}_{2}}$($0<n≤\frac{1}{2}$),
则y=$\frac{2(n-1)}{n+1}$-lnn($0<n≤\frac{1}{2}$),记为M(n),
M′(n)=$2×\frac{n+1-(n-1)}{(n+1)^{2}}$-$\frac{1}{n}$=$\frac{-(n-1)^{2}}{n(n+1)^{2}}$<0,
∴M(n)在$(0,\frac{1}{2}]$上单调递减,
∴M(n)min=M$(\frac{1}{2})$=ln2-$\frac{2}{3}$,
∴求$y=({x_1}-{x_2})φ'(\frac{{{x_1}+{x_2}}}{2})$的最小值为ln2-$\frac{2}{3}$.

点评 本题考查了利用导数研究其单调性极值与最值、导数的几何意义、分类讨论方法、函数的奇偶性、换元方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-2x+mlnx(m∈R),$g(x)=(x-\frac{3}{4}){e^x}$.
(1)求函数f(x)的单调性;
(2)若f(x)存在两个极值点x1,x2(x1<x2),求g(x1-x2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,在四棱锥E-ABCD中,ABCD是边长为2的正方形,且AE⊥平面CDE,且∠DAE=30°
(1)求证:平面ABE⊥平面ADE
(2)求点A到平面BDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}与{bn}满足${a_{n+1}}+2{b_n}=2{b_{n+1}}+{a_n}({n∈{N^*}})$,若${a_1}=9,{b_n}={3^n}$(n∈N*)且$λ{a_n}>{3^n}+36({n-3})+3λ$对一切n∈N*恒成立,则实数λ的取值范围是($\frac{13}{18}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=2sin(-2x+θ)(0<θ<π),$f({\frac{π}{4}})=-1$,则f(x)的一个单调递减区间是(  )
A.$({-\frac{5π}{12},\frac{π}{12}})$B.$({\frac{π}{12},\frac{7π}{12}})$C.$({-\frac{π}{6},\frac{π}{3}})$D.$({-\frac{π}{12},\frac{5π}{12}})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-4x+3.
(1)求f(x)在区间[0,m]上的最小值;
(2)在给出的直角坐标系中,作出函数g(x)=f(|x|)的图象,并根据图象写出其单调减区间;
(3)若关于x的方程f(|x|)-a=x至少有三个不相等的实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知复数z1满足|z1|=1,又z2=2i,则|z1+z2|的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=sinx+cosx的最大值是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面面积恒相等,则体积相等.设A,B为两个同高的几何体,p:A,B的体积相等,q:A,B在等高处的截面面积恒相等,根据祖暅原理可知,p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案