精英家教网 > 高中数学 > 题目详情
4.已知复数z1满足|z1|=1,又z2=2i,则|z1+z2|的最大值是3.

分析 |z1|=1,可设z1=cosθ+isinθ,z1+z2=cosθ+(sinθ+2)i,利用复数模的计算公式即可得出.

解答 解:∵|z1|=1,可设z1=cosθ+isinθ,
z1+z2=cosθ+(sinθ+2)i,
则|z1+z2|=$\sqrt{{cos}^{2}θ{+(sinθ+2)}^{2}}$=$\sqrt{5+4sinθ}$,
故1≤|z1+z2|≤3,
故答案为:3.

点评 本题考查了复数的运算法则、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知数列{an},Sn是其前n项和,且满足2an=Sn+n(n∈N*).
(1)求证:数列{an+1}是等比数列;
(2)设bn=log2(an+1),且Mn为数列{bn}的前n项和,求数列$\left\{{\frac{1}{M_n}}\right\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,AB∥CD,△PAD是等边三角形,平面PAD⊥平面ABCD,已知AD=2,$BD=2\sqrt{3}$,AB=2CD=4.
(1)设M是PC上一点,求证:平面MBD⊥平面PAD;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数$f(x)=\frac{1}{3}a{x^3}+\frac{1}{2}b{x^2}+cx$(a,b,c∈R,a≠0)的图象在点(x,f(x))处的切线的斜率为k(x),且函数$g(x)=k(x)-\frac{1}{2}x$为偶函数.若函数k(x)满足下列条件:①k(-1)=0;②对一切实数x,不等式$k(x)≤\frac{1}{2}{x^2}+\frac{1}{2}$恒成立.
(1)求函数k(x)的表达式;
(2)设函数$h(x)=ln{x^2}-(2m+3)x+\frac{12f(x)}{x}$(x>0)的两个极值点x1,x2(x1<x2)恰为φ(x)=lnx-sx2-tx的零点,当$m≥\frac{{3\sqrt{2}}}{2}$时,求$y=({x_1}-{x_2})φ'(\frac{{{x_1}+{x_2}}}{2})$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知F是双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦点,过点F作E的一条渐近线的垂线,垂足为P,垂线PF与E相交于点Q,记点Q到E的两条渐近线的距离之积为d2,若|FP|=2d,则该双曲线的离心率(  )
A.$\sqrt{2}$B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=-x3+3x2+9x+a
(1)求f(x)的单调递减区间;
(2)若a=-2,求f(x)在区间[-2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的非负半轴,建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+m}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t是参数).
(1)将曲线C的极坐标方程和直线l的参数方程转化为普通方程;
(2)若直线l与曲线C相交于A、B两点,且|AB|=$\sqrt{14}$,试求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若向量$\vec a=(1,λ,2),\vec b=(2,-1,2)$,且$\vec a$与$\vec b$的夹角余弦为$\frac{8}{9}$,则λ等于(  )
A.-2或$\frac{2}{55}$B.-2C.2D.2或$-\frac{2}{55}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若复数z满足z•i=2+3i,则在复平面内z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案