精英家教网 > 高中数学 > 题目详情

已知等差数列的首项,公差.且分别是等比数列
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列对任意自然数均有 成立,求  的值.

(Ⅰ) , ;(Ⅱ).

解析试题分析:(Ⅰ)根据等比中项的定义列出等式,求出等差数列的公差,从而求出数列的公比,便可得到通向公式;(Ⅱ)按已知等式的规律写出,再两式相减,得出数列即是等差数列,变形求得数列的通向公式,用公式求和.
试题解析:(Ⅰ)∵,且成等比数列
                 2分
                            4分
又∵. 
                                6分
(Ⅱ)∵       ①
 即
   ②
①-②:                             8分
 
∴                             10分
  

                          12分
考点:等差数列、等比数列的性质,求和公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如果项数均为的两个数列满足且集合,则称数列是一对“项相关数列”.
(Ⅰ)设是一对“4项相关数列”,求的值,并写出一对“
关数列”
(Ⅱ)是否存在“项相关数列”?若存在,试写出一对;若不存在,请说明理由;
(Ⅲ)对于确定的,若存在“项相关数列”,试证明符合条件的“项相关数列”有偶数对.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正项数列的前项和为的等比中项.
(1)求证:数列是等差数列;
(2)若,且,求数列的通项公式;
(3)在(2)的条件下,若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是数列的前项和,.
(1)求证:数列是等差数列,并的通项;
(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的两个无穷数列满足
(Ⅰ)当数列是常数列(各项都相等的数列),且时,求数列的通项公式;
(Ⅱ)设都是公差不为0的等差数列,求证:数列有无穷多个,而数列惟一确定;
(Ⅲ)设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}的前n项和为 Sn
(I)若a1=1,S10= 100,求{an}的通项公式;
(II)若Sn=n2-6n,解关于n的不等式Sn+an>2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下面四个图案,都是由小正三角形构成,设第n个图形中所有小正三角形边上黑点的总数为.
          
图1            图2                图3                        图4
(1)求出,,,;
(2)找出的关系,并求出的表达式;
(3)求证:().

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{}中,=14,前10项和. (1)求
(2)将{}中的第2项,第4项,…,第项按原来的顺序排成一个新数列{},令,求数列{}的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,且满足 (),,设
(1)求证:数列是等比数列;
(2)若,求实数的最小值;
(3)当时,给出一个新数列,其中,设这个新数列的前项和为,若可以写成 ()的形式,则称为“指数型和”.问中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案