精英家教网 > 高中数学 > 题目详情

【题目】直线l:ax+ y﹣1=0与x,y轴的交点分别为A,B,直线l与圆O:x2+y2=1的交点为C,D.给出下列命题:p:a>0,SAOB= ,q:a>0,|AB|<|CD|.则下面命题正确的是(
A.p∧q
B.¬p∧¬q
C.p∧¬q
D.¬p∧q

【答案】C
【解析】解:直线l:ax+ y﹣1=0与x,y轴的交点分别为A( ,0),B(0,a), SAOB= =
∴p是真命题;
直线l:ax+ y﹣1=0与x,y轴的交点分别为A( ,0),B(0,a),
|AB|=
直线l与圆O:x2+y2=1的交点为C,D.d=
|CD|=2 ,|AB|2﹣|CD|2= ≥0,
∴|AB|≥|CD|,
所以q假,
故选:C.
利用已知条件求出三角形的面积,判断p的真假;求出|AB|与|CD|的差,判断大小,推出真假,然后判断选项即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 经过点 ,离心率为 ,左、右焦点分别为
(1)求椭圆的方程;
(2)若直线 与椭圆交于A,B两点,与以 为直径的圆交于C,D两点,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 ,圆心为 ,定点 为圆 上一点,线段 上一点 满足 ,直线 上一点 ,满足
(Ⅰ)求点 的轨迹 的方程;
(Ⅱ) 为坐标原点, 是以 为直径的圆,直线 相切,并与轨迹 交于不同的两点 .当 且满足 时,求 面积 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产两种产品,按计划每天生产各不得少于10吨,已知生产产品吨需要用煤9吨,电4度,劳动力3个(按工作日计算).生产产品1吨需要用煤4吨,电5度,劳动力10个,如果产品每吨价值7万元, 产品每吨价值12万元,而且每天用煤不超过300吨,用电不超过200度,劳动力最多只有300个,每天应安排生产两种产品各多少才是合理的?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{ 满足 .
(1)求证:数列 是等比数列;
(2)若数列 是单调递增数列,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科研小组有20个不同的科研项目,每年至少完成一项。有下列两种完成所有科研项目的计划:

A计划:第一年完成5项,从第一年开始,每年完成的项目不得少于次年,直到全部完成为止;

B计划:第一年完成项数不限,从第一年开始,每年完成的项目不得少于次年,恰好5年完成所有项目。

那么,按照A计划和B计划所安排的科研项目不同完成顺序的方案数量

A. 按照A计划完成的方案数量多

B. 按照B计划完成的方案数量多

C. 按照两个计划完成的方案数量一样多

D. 无法判断哪一种计划的方案数量多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 ,直线 交于 两点,且 ,其中 为坐标原点.
(1)求抛物线 的方程;
(2)已知点 的坐标为(-3,0),记直线 的斜率分别为 ,证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 ,直线过定点.

(Ⅰ)若与圆相切,求的方程;

(Ⅱ)若与圆相交于两点,求的面积的最大值,并求此时直线的方程.(其中点是圆的圆心)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:①若,则②若,则③若,则④若,则的最小值为9;其中正确命题的序号是______(将你认为正确的命题序号都填上).

查看答案和解析>>

同步练习册答案