精英家教网 > 高中数学 > 题目详情

【题目】某科研小组有20个不同的科研项目,每年至少完成一项。有下列两种完成所有科研项目的计划:

A计划:第一年完成5项,从第一年开始,每年完成的项目不得少于次年,直到全部完成为止;

B计划:第一年完成项数不限,从第一年开始,每年完成的项目不得少于次年,恰好5年完成所有项目。

那么,按照A计划和B计划所安排的科研项目不同完成顺序的方案数量

A. 按照A计划完成的方案数量多

B. 按照B计划完成的方案数量多

C. 按照两个计划完成的方案数量一样多

D. 无法判断哪一种计划的方案数量多

【答案】C

【解析】分析:先分别按照计划确定完成的方案数量,再作比较.

详解:因为按照A计划完成的方案数量为15个项目(去掉第一年5个项目)在5个列中排列数(要求左列数不小于右列数),按照B计划完成的方案数量为15个项目(去掉每一年至少一个项目)在5行中排列数(要求上行数不小于下行数),一样多,所以选C.

A计划

第一列

第二列

第三列

第四列

第五列

第一年

1

1

1

1

1

第二年

第三年

第四年

…...

n

B计划

第一列

第二列

第三列

第四列

……

n

第一年

1

第二年

1

第三年

1

第四年

1

第五年

1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知ABC的面积为3,且满足0≤≤6,设的夹角为θ.

(1)θ的取值范围;

(2)求函数f(θ)=2sin2 (cos θ+sin θ)·(cos θ-sin θ)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的奇函数满足,且在上是增函数;

定义行列式; 函数 (其中).

(1) 证明: 函数上也是增函数;

(2) 若函数的最大值为4,求的值;

(3) 若记集合M={m|恒有g()<0},,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点 为圆 上任意一点,线段 上一点 满足 ,直线 上一点 ,满足 .
(1)当 在圆周上运动时,求点 的轨迹 的方程;
(2)若直线 与曲线 交于 两点,且以 为直径的圆过原点 ,求证:直线 不可能相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l:ax+ y﹣1=0与x,y轴的交点分别为A,B,直线l与圆O:x2+y2=1的交点为C,D.给出下列命题:p:a>0,SAOB= ,q:a>0,|AB|<|CD|.则下面命题正确的是(
A.p∧q
B.¬p∧¬q
C.p∧¬q
D.¬p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体 为一简单组合体,在底面 中, 平面

(1)求证:平面 平面
(2)求该组合体 的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分10分)已知等差数列{an}满足a1+a2=10,a4-a3=2.

(1)求{an}的通项公式.

(2)设等比数列{bn}满足b2=a3,b3=a7.问:b6与数列{an}的第几项相等?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均不相等的等差数列{an}的前n项和为SnS10=45,且a3,a5,a9恰为等比数列{bn}的前三项,记

(1)分别求数列{an}、{bn}的通项公式;

(2)m=17,求cn取得最小值时n的值;

(3)c1为数列{cn}的最小项时, 有相应的可取值,我们把所有am的和记为A1;…;当ci为数列的最小项时,有相应的可取值,我们把所有am的和记为Ai;…,令Tn= A1+ A2+…+An,求Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是公差不为零的等差数列, 是等比数列,且,,.

(1)求数列,的通项公式;

(2)记,求数列的前项和

(3)若满足不等式成立的恰有个,求正整数的值.

查看答案和解析>>

同步练习册答案