精英家教网 > 高中数学 > 题目详情

【题目】如图,在多面体中,,四边形和四边形是两个全等的等腰梯形.

1)求证:四边形为矩形;

2)若平面平面,求平面与平面所成二面角的余弦值.

【答案】1)证明见解析(2

【解析】

1)由梯形性质可得四边形为平行四边形,即可得.又可证明平面,而,即可得,从而四边形为矩形.

2)分别取的中点,可得,因而以为坐标原点,建立空间直角坐标系,写出各个点的坐标,并分别求得平面和平面的法向量,即可由空间向量的数量积求得两个平面所成二面角的余弦值.

1)证明:分别取的中点,如下图所示:

∵四边形和四边形是两个全等的等腰梯形

∴四边形为平行四边形

的中点

,同理

的中点,的中点

,且

四点共面,四边形为底的梯形

相交

平面

平面

∴四边形为矩形.

2)分别取的中点,则

,可知

同理

又由平面平面,平面平面平面,所以平面

平面

所以

则以为坐标原点,方向分别为轴的正方向,建立如图所示空间直角坐标系,

设平面的法向量为

,代入可求得,所以

设平面的法向量为

,代入可求得,所以

由图可知平面与平面所成二面角为锐二面角.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.

根据该走势图下列结论正确的是( )

A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化

B. 这半年中,网民对该关键词相关的信息关注度不断减弱

C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差

D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次高三年级统一考试中,数学试卷有一道满分10分的选做题,学生可以从,两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001—900.

1)若采用随机数表法抽样,并按照以下随机数表,以加粗的数字5为起点,从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端.写出样本编号的中位数;

05 26 93 70 60 22 35 85 15 13 92 03 51 59 77 59 56 78 06 83 52 91 05 70 74

07 97 10 88 23 09 98 42 99 64 61 71 62 99 15 06 51 29 16 93 58 05 77 09 51

51 26 87 85 85 54 87 66 47 54 73 32 08 11 12 44 95 92 63 16 29 56 24 29 48

26 99 61 65 53 58 37 78 80 70 42 10 50 67 42 32 17 55 85 74 94 44 67 16 94

14 65 52 68 75 87 59 36 22 41 26 78 63 06 55 13 08 27 01 50 15 29 39 39 43

2)若采用系统抽样法抽样,且样本中最小编号为08,求样本中所有编号之和:

3)若采用分层轴样,按照学生选择题目或题目,将成绩分为两层,且样本中题目的成绩有8个,平均数为7,方差为4:样本中题目的成绩有2个,平均数为8,方差为1.用样本估计900名考生选做题得分的平均数与方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1ab0)的离心率e,且点P1)在椭圆C.

1)求椭圆C的方程;

2)若椭圆C的左焦点为F,右顶点为A,点Mst)(t0)是椭圆C上的动点,直线AMy轴交于点D,点Ey轴上一点,EFDFEA与椭圆C交于点G,若△AMG的面积为2,求直线AM的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年4月25日-27日,北京召开第二届“一带一路”国际高峰论坛,组委会要从6个国内媒体团和3个国外媒体团中选出3个媒体团进行提问,要求这三个媒体团中既有国内媒体团又有国外媒体团,且国内媒体团不能连续提问,则不同的提问方式的种数为 ( )

A. 198B. 268C. 306D. 378

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为:为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)设曲线与直线交于两点,若点的坐标为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点O与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.C的参数方程为为参数,),直线l,若直线l与曲线C相交于AB两点,且.

1)求a

2)若MN为曲线C上的两点,且,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】奇函数fx)在R上存在导数,当x0时,fx),则使得(x21fx)<0成立的x的取值范围为(

A.(﹣10)∪(01B.(﹣,﹣1)∪(01

C.(﹣10)∪(1+∞D.(﹣,﹣1)∪(1+∞

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201912月以来,湖北武汉市发现多起病毒性肺炎病例,并迅速在全国范围内开始传播,专家组认为,本次病毒性肺炎病例的病原体初步判定为新型冠状病毒,该病毒存在人与人之间的传染,可以通过与患者的密切接触进行传染.我们把与患者有过密切接触的人群称为密切接触者,每位密切接触者被感染后即被称为患者.已知每位密切接触者在接触一个患者后被感染的概率为,某位患者在隔离之前,每天有位密切接触者,其中被感染的人数为,假设每位密切接触者不再接触其他患者.

1)求一天内被感染人数为的概率的关系式和的数学期望;

2)该病毒在进入人体后有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间,设每位患者在被感染后的第二天又有位密切接触者,从某一名患者被感染,按第1天算起,第天新增患者的数学期望记为.

i)求数列的通项公式,并证明数列为等比数列;

ii)若戴口罩能降低每位密切接触者患病概率,降低后的患病概率,当取最大值时,计算此时所对应的值和此时对应的值,根据计算结果说明戴口罩的必要性.(取

(结果保留整数,参考数据:

查看答案和解析>>

同步练习册答案