精英家教网 > 高中数学 > 题目详情

某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利润(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不能超过利润的%.现有三个奖励模型:,分析与推导哪个函数模型能符合该公司的要求?并给予证明.(注:

.只有模型能符合公司要求.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)函数是定义域在(-1,1)上奇函数,且.
(1)确定函数的解析式;
(2)用定义证明在(-1,1)上是增函数;
(3)解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数对于任意的满足.
(1)求的值;
(2)求证:为偶函数;
(3)若上是增函数,解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知函数.
(1) 若函数的定义域和值域均为,求实数的值;
(2) 若在区间上是减函数,且对任意的
总有,求实数的取值范围;
(3) 若上有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价(元/件),可近似看做一次函数的关系(图象如下图所示)

(1)根据图象,求一次函数的表达式;
(2)设公司获得的毛利润为S元,
①求S关于的函数表达式;
②求该公司可获得的最大毛利润,并求出此时相应的销售单价.
(提示:毛利润=销售总价-成本总价)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数对于任意, 总有
并且当
⑴求证上的单调递增函数
⑵若,求解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知,(1)求的解析式;(2)求 的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

f(3-2x)的定义域为,求f(2x+1)的定义域.(8分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的值;
(2)证明函数上是减函数,并求函数的最大值和最小值.

查看答案和解析>>

同步练习册答案