精英家教网 > 高中数学 > 题目详情

已知函数
(1)当时,求的值;
(2)证明函数上是减函数,并求函数的最大值和最小值.

(1)(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
判断并证明函数上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利润(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不能超过利润的%.现有三个奖励模型:,分析与推导哪个函数模型能符合该公司的要求?并给予证明.(注:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数对任意实数满足
,且.
(1)求的值;
(2)求证:为奇函数且是周期函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1
(1)求f(1)的值
(2)若满足f(x) +f(x-8)≤2 求x的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是定义在R上的两个函数,是R上任意两个不等的实根,设
恒成立,且为奇函数,判断函数的奇偶性并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上是减函数,求函数上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)设函数
(1)求函数的定义域;
(2)求函数的值域;
(3)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知函数为常数,)的图象过点.
(1)求实数的值;
(2)若函数,试判断函数的奇偶性,并说明理由.

查看答案和解析>>

同步练习册答案