精英家教网 > 高中数学 > 题目详情

已知函数上是减函数,求函数上的最大值与最小值.

时,=
时,

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)已知函数对于任意的满足.
(1)求的值;
(2)求证:为偶函数;
(3)若上是增函数,解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价(元/件),可近似看做一次函数的关系(图象如下图所示)

(1)根据图象,求一次函数的表达式;
(2)设公司获得的毛利润为S元,
①求S关于的函数表达式;
②求该公司可获得的最大毛利润,并求出此时相应的销售单价.
(提示:毛利润=销售总价-成本总价)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义函数
(1)令函数的图象为曲线,若存在实数,使得曲线处有斜率是的切线,求实数的取值范围;
(2)当,且时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在区间上的最大值为2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数对于任意, 总有
并且当
⑴求证上的单调递增函数
⑵若,求解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.已知函数
(Ⅰ)若函数上为增函数,求正实数的取值范围;
( Ⅱ) 设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的值;
(2)证明函数上是减函数,并求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知偶函数上是减函数,求不等式的解集。

查看答案和解析>>

同步练习册答案