科目:高中数学 来源: 题型:解答题
(16分)已知函数是定义在上的奇函数,且当时,.
(1)当时,求函数的解析式;
(2)若函数为单调递减函数;
①直接写出的范围(不必证明);
②若对任意实数,恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1
(1)求f(1)的值
(2)若满足f(x) +f(x-8)≤2 求x的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(13分)(1)二次函数满足:为偶函数且,求的解析式;
(2)若函数定义域为,求取值范围。
(3)若函数值域为,求取值范围。
(4)若函数在上单调递减,求取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数有如下性质:如果常数,那么该函数在上是减函数,在 上是增函数.
(1)如果函数在上是减函数,在上是增函数,求的值;
(2)证明:函数(常数)在上是减函数;
(3)设常数,求函数的最小值和最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分) 已知函数f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),设h(x)=f(x)-g(x).
(1)求函数h(x)的定义域;
(2)判断h(x)的奇偶性,并说明理由;
(3)若f(3)=2,求使h(x)>0成立的x的集合.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com