精英家教网 > 高中数学 > 题目详情

已知函数f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1
(1)求f(1)的值
(2)若满足f(x) +f(x-8)≤2 求x的取值范围

(1)f(1)=1  (2)x的取值范围是 

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数是定义域为上的奇函数,且
(1)求的解析式,    
(2)用定义证明:上是增函数,
(3)若实数满足,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知函数.
(1) 若函数的定义域和值域均为,求实数的值;
(2) 若在区间上是减函数,且对任意的
总有,求实数的取值范围;
(3) 若上有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价(元/件),可近似看做一次函数的关系(图象如下图所示)

(1)根据图象,求一次函数的表达式;
(2)设公司获得的毛利润为S元,
①求S关于的函数表达式;
②求该公司可获得的最大毛利润,并求出此时相应的销售单价.
(提示:毛利润=销售总价-成本总价)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)当时,求的极值;
(2)当时,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义函数
(1)令函数的图象为曲线,若存在实数,使得曲线处有斜率是的切线,求实数的取值范围;
(2)当,且时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的值;
(2)证明函数上是减函数,并求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知偶函数上是减函数,求不等式的解集。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对定义在上,并且同时满足以下两个条件的函数称为H函数.
① 对任意的,总有
② 当时,总有成立.
已知函数是定义在上的函数.
(1)试问函数是否为H函数?并说明理由;
(2)若函数是H函数,求实数a的值;
(3)在(2)的条件下,若方程有解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案