精英家教网 > 高中数学 > 题目详情

.已知函数
(Ⅰ)若函数上为增函数,求正实数的取值范围;
( Ⅱ) 设,求证:

(1); (2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数上是减函数,求函数上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数有如下性质:如果常数,那么该函数在上是减函数,在 上是增函数.
(1)如果函数上是减函数,在上是增函数,求的值;
(2)证明:函数(常数)在上是减函数;
(3)设常数,求函数的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知函数为常数,)的图象过点.
(1)求实数的值;
(2)若函数,试判断函数的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知是定义在上的奇函数,当时,
(1)求的解析式;
(2)是否存在负实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由.
(3)对如果函数的图像在函数的图像的下方,则称函数在D上被函数覆盖.求证:若时,函数在区间上被函数覆盖.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是奇函数,且.
(1)求函数f(x)的解析式;  
(2)判断函数f(x)在上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知函数f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),设h(x)=f(x)-g(x).
(1)求函数h(x)的定义域;
(2)判断h(x)的奇偶性,并说明理由;
(3)若f(3)=2,求使h(x)>0成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知y=是二次函数,且f(0)=8及f(x+1)-f(x)=-2x+1
(1)求的解析式;
(2)求函数的单调递减区间及值域..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为R的函数是奇函数.
(1)求a的值;(2)判断的单调性(不需要写出理由);
(3)若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案