精英家教网 > 高中数学 > 题目详情
5.若ax2-5x+b>0解集为{x|-3<x<2},则bx2-5x+a>0解集为(  )
A.{x|x<-$\frac{1}{3}$或x>$\frac{1}{2}$}B.{x|-3<x<2}C.{x|-$\frac{1}{3}$<x<$\frac{1}{2}$}D.{x|x<-3或x>2}

分析 ax2-5x+b>0解集为{x|-3<x<2},可得:-3,2是一元二次方程ax2-5x+b=0的两个实数根,a<0.利用根与系数的关系可得:a,b,再利用一元二次不等式的解法即可解出bx2-5x+a>0.

解答 解:∵ax2-5x+b>0解集为{x|-3<x<2},
∴-3,2是一元二次方程ax2-5x+b=0的两个实数根,a<0.
∴-3+2=$\frac{5}{a}$,-3×2=$\frac{b}{a}$,解得a=-5,b=30.
∴bx2-5x+a>0即为30x2-5x-5>0,化为6x2-x-1>0,
解得$x>\frac{1}{2}$或x$<-\frac{1}{3}$.
∴解集为$\{x|x>\frac{1}{2}或x<-\frac{1}{3}\}$.
故选:A.

点评 本题考查了一元二次不等式的解法、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知椭圆的中心为坐标原点,且与双曲线y2-3x2=3有相同的焦点,椭圆的离心率e=$\frac{1}{2}$,求椭圆的标准方程;
(2)已知椭圆$\frac{x^2}{m}$+$\frac{y^2}{3}$=1的离心率为$\frac{{\sqrt{3}}}{2}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥E-ABCD中,AB=BD=AD,CB=CD,EC⊥BD.
(Ⅰ)求证:△BDE是等腰三角形;
(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-e2,试判断f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设|x|≠1,求证:$\frac{x}{1-{x}^{2}}$+$\frac{{x}^{2}}{1-{x}^{4}}$+$\frac{{x}^{4}}{1-{x}^{8}}$+…+$\frac{{x}^{{2}^{n-1}}}{1-{x}^{2n}}$=$\frac{1}{1-x}$•$\frac{x-{x}^{{2}^{n}}}{1-{x}^{{2}^{n}}}$(其中n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{x^2}{lnx}$.
(Ⅰ)求函数f(x)在区间[${e^{\frac{1}{4}}}$,e]上的最值;
(Ⅱ)设g(x)=f(x)-$\frac{4m(x-m)}{lnx}$(0<m<$\frac{1}{2}$),
若函数g(x)有三个极值点,设为a,b,c且a<b<c.
证明:0<2a<b<1<c,并求出函数g(x)的单调区间(用a,b,c表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为了促进学生的全面发展,贵州某中学重视学生社团文化建设,2014年该校某新生确定争取进入曾获团中央表彰的“海济社”和“话剧社”.已知该同学通过考核选拨进入两个社团成功与否相互独立,根据报名情况和他本人的才艺能力,两个社团都能进入的概率为$\frac{1}{24}$,至少进入一个社团的概率为$\frac{3}{8}$,并且进入“海济社”的概率小于进入“话剧社”的概率.
(1)求该同学分别通过选拨进入“海济社”的概率p1和进入“话剧社”的概率p2
(2)学校根据这两个社团的活动安排情况,对进入“海济社”的同学增加1个校本选修课学分,对进入“话剧社”的同学增加0.5个校本选修课学分.求该同学在社团方面获得校本选修加分分数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求直线3x+4y-2=0被圆(x-1)2+(y-1)2=2所截得的弧长.

查看答案和解析>>

同步练习册答案