分析 (1)由条件利用双曲线的性质求得c,再根据椭圆的离心率e=$\frac{1}{2}$,求得a的值,从而得到b的值,从而求得要求的椭圆的标准方程.
(2)由题意可得$\frac{\sqrt{m-3}}{\sqrt{m}}$=$\frac{\sqrt{3}}{2}$ 或 $\frac{\sqrt{3-m}}{\sqrt{3}}$=$\frac{\sqrt{3}}{2}$,由此求得m的值.
解答 解:(1)双曲线y2-3x2=3,即 $\frac{{y}^{2}}{3}$-x2=1,它的焦点为(0,±2).
由题意可得c=2,$\frac{c}{a}$=$\frac{1}{2}$,∴a=4,b2=a2-c2=12,∴要求的椭圆的标准方程为 $\frac{y^2}{16}+\frac{x^2}{12}=1$.
(2)由于已知椭圆$\frac{x^2}{m}$+$\frac{y^2}{3}$=1的离心率为$\frac{{\sqrt{3}}}{2}$,∴$\frac{\sqrt{m-3}}{\sqrt{m}}$=$\frac{\sqrt{3}}{2}$ 或 $\frac{\sqrt{3-m}}{\sqrt{3}}$=$\frac{\sqrt{3}}{2}$,
求得m=12,或$m=\frac{3}{4}$.
点评 本题主要考查椭圆的定义、标准方程,以及简单性质的应用,体现了分类讨论的数学思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 不是定值 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x<-$\frac{1}{3}$或x>$\frac{1}{2}$} | B. | {x|-3<x<2} | C. | {x|-$\frac{1}{3}$<x<$\frac{1}{2}$} | D. | {x|x<-3或x>2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com