精英家教网 > 高中数学 > 题目详情
13.如图,在四棱锥E-ABCD中,AB=BD=AD,CB=CD,EC⊥BD.
(Ⅰ)求证:△BDE是等腰三角形;
(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.

分析 (Ⅰ)设BD中点为O,连接OC,OE,则CO⊥BD,CE⊥BD,于是BD⊥平面EOC,从而EO⊥BD,即OE是BD的垂直平分线;
(Ⅱ)取AB中点N,连接MN,DN,MN,易证MN∥平面BEC,DN∥平面BEC,由面面平行的判定定理即可证得平面DMN∥平面BEC,又DM?平面DMN,于是DM∥平面BEC;

解答 证明:(Ⅰ)取BD的中点O,连结CO,EO,
∵△BCD是等腰三角形,∠BCD=120°,∴CB=CD,∴CO⊥BD,
又∵EC⊥BD,EC∩CO=C,∴BD⊥平面EOC,∴EO⊥BD,
在△BDE中,由于O为BD的中点,所以BE=DE;
所以△BDE是等腰三角形;
(Ⅱ)取AB中点N,连接MN,DN,

∵M是AE的中点,
∴MN∥BE,又MN?平面BEC,BE?平面BEC,
∴MN∥平面BEC,
∵△ABD是等边三角形,
∴∠BDN=30°,又CB=CD,∠BCD=120°,
∴∠CBD=30°,
∴ND∥BC,
又DN?平面BEC,BC?平面BEC,
∴DN∥平面BEC,又MN∩DN=N,故平面DMN∥平面BEC,又DM?平面DMN,
∴DM∥平面BEC.

点评 本题考查直线与平面平行的判定,考查线面垂直的判定定理与面面平行的判定定理的应用,着重考查分析推理能力与表达、运算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知点M(4,-4)在抛物线C:y2=2px上,直线l与C交于A,B,求其准线上是否有存在一点N,使四边形AMBN为菱形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=axn-lnx-1(n∈N*,n≥2,a>1).
(Ⅰ)若a=2,n=2,求函数f(x)的极值;
(Ⅱ)若函数f(x)存在两个零点x1,x2
(i)求a的取值范围;
(ii)求证:x1x2>e${\;}^{\frac{2}{n}-2}$(e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四边形ABCD为菱形,MA⊥平面ABCD,四边形ADNM是平行四边形.
(Ⅰ)求证:MB∥平面CDN;
(Ⅱ)求证:平面AMC⊥平面BDN.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.F是双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a,b>0)的焦点,过F作x轴的垂线,与双曲线交于点A,过F作与渐近线平行的直线,与双曲线交于点B.若三角形FAB为直角三角形,则双曲线C的离心率为(  )
A.不是定值B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的$\frac{1}{4}$,则该双曲线的渐近线方程是(  )
A.x±2y=0B.2x±y=0C.$\sqrt{3}$x±y=0D.x$±\sqrt{3}$y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若ax2-5x+b>0解集为{x|-3<x<2},则bx2-5x+a>0解集为(  )
A.{x|x<-$\frac{1}{3}$或x>$\frac{1}{2}$}B.{x|-3<x<2}C.{x|-$\frac{1}{3}$<x<$\frac{1}{2}$}D.{x|x<-3或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若定义在R上的函数f(x)满足f(x)=$\frac{f′(1)}{2}$•e2x-2+x2-2f(0)•x,g(x)=f($\frac{x}{2}$)-$\frac{1}{4}$x2+(1-a)x+a.
(Ⅰ)求函数f(x)解析式;
(Ⅱ)求函数g(x)单调区间;
(Ⅲ)试比较|$\frac{e}{x}$-lnx|+lnx和ex-1+a的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知由直线y=2-x与曲线y=x2转成的平面图形的面积为S1,由直线y=x+3与曲线y=x2-2x+3围成的平面图形的面积为S2.试比较S1与S2的大小.

查看答案和解析>>

同步练习册答案