分析 (Ⅰ)设BD中点为O,连接OC,OE,则CO⊥BD,CE⊥BD,于是BD⊥平面EOC,从而EO⊥BD,即OE是BD的垂直平分线;
(Ⅱ)取AB中点N,连接MN,DN,MN,易证MN∥平面BEC,DN∥平面BEC,由面面平行的判定定理即可证得平面DMN∥平面BEC,又DM?平面DMN,于是DM∥平面BEC;
解答 证明:(Ⅰ)取BD的中点O,连结CO,EO,![]()
∵△BCD是等腰三角形,∠BCD=120°,∴CB=CD,∴CO⊥BD,
又∵EC⊥BD,EC∩CO=C,∴BD⊥平面EOC,∴EO⊥BD,
在△BDE中,由于O为BD的中点,所以BE=DE;
所以△BDE是等腰三角形;
(Ⅱ)取AB中点N,连接MN,DN,![]()
∵M是AE的中点,
∴MN∥BE,又MN?平面BEC,BE?平面BEC,
∴MN∥平面BEC,
∵△ABD是等边三角形,
∴∠BDN=30°,又CB=CD,∠BCD=120°,
∴∠CBD=30°,
∴ND∥BC,
又DN?平面BEC,BC?平面BEC,
∴DN∥平面BEC,又MN∩DN=N,故平面DMN∥平面BEC,又DM?平面DMN,
∴DM∥平面BEC.
点评 本题考查直线与平面平行的判定,考查线面垂直的判定定理与面面平行的判定定理的应用,着重考查分析推理能力与表达、运算能力,属于中档题
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 不是定值 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x±2y=0 | B. | 2x±y=0 | C. | $\sqrt{3}$x±y=0 | D. | x$±\sqrt{3}$y=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x<-$\frac{1}{3}$或x>$\frac{1}{2}$} | B. | {x|-3<x<2} | C. | {x|-$\frac{1}{3}$<x<$\frac{1}{2}$} | D. | {x|x<-3或x>2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com