精英家教网 > 高中数学 > 题目详情
如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.
(1)求直线BE和直线CD所成角的余弦值;
(2)在棱C1D1上是否存在一点F,使B1F平面A1BE?证明你的结论.
(1)在正方体ABCD-A1B1C1D1中,由于ABCD,
故∠ABE(或其补角)即为直线BE和直线CD所成角.
设正方体的棱长为1,则由E是棱DD1的中点,可得AB=1,BE=
BD2+DE2
=
3
2

在Rt△ABE中,由余弦定理求得cos∠ABE=
AB
AE
=
2
3

(II)设AB1∩A1B=O,取C1D1中点F,连接OE、EB、B1F.根据三角形中位线定理,得EFC1D且EF=
1
2
C1D,平行四边形AB1C1D中,有B1OC1D且B1O=
1
2
C1D,
∴EFB1O且EF=B1O,四边形B1OEF为平行四边形,B1FOE,又B1F?平面A1BE,OE?平面A1BE,
∴B1F平面A1BE,
即存在C1D1中点F,使B1F平面A1BE.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

一个正三棱柱的每一条棱长都是a,则经过底面一边和相对侧棱的一个端点的截面(即图中△ACD)的面积为(  )
A.
7
4
a2
B.
7
2
a2
C.
6
3
a2
D.
7
a2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直四棱柱ABCD-A1B1C1D1口,ABCD,AD⊥AB,AB=2,AD=
2
,AA1=3,E为CD7一点,DE=1,EC=3
(1)证明:BE⊥平面BB1C1C;
(2)求点B1到平面EA1C1的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三角形ABC中,AC=BC=
2
2
AB
,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G、F分别是EC、BD的中点.
(Ⅰ)求证:GF底面ABC;
(Ⅱ)求证:AC⊥平面EBC;
(Ⅲ)求几何体ADEBC的体积V.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知PA⊥面ABCD,PA=AB=AD=
1
2
CD,∠BAD=∠ADC=90°
(1)在面PCD上找一点M,使BM⊥面PCD;
(2)求由面PBC与面PAD所成角的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点,
(1)求证:AC⊥BC1
(2)求证:AC1平面CDB1
(3)求二面角C1-AB-C的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA⊥PD,E,F分别为PC,BD的中点.证明
(1)EF平面PAD;
(2)EF⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

长方体ABCD-A1B1C1D1中,AA1=
2
,AB=BC=2,O是底面对角线的交点.
(Ⅰ)求证:B1D1平面BC1D;
(Ⅱ)求证:A1O⊥平面BC1D;
(Ⅲ)求三棱锥A1-DBC1的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

三棱锥P-ABC,底面ABC为边长为2
3
的正三角形,平面PBC⊥平面ABC,PB=PC=2,D为AP上一点,AD=2DP,O为底面三角形中心.
(Ⅰ)求证DO面PBC;
(Ⅱ)求证:BD⊥AC;
(Ⅲ)求面DOB截三棱锥P-ABC所得的较大几何体的体积.

查看答案和解析>>

同步练习册答案