精英家教网 > 高中数学 > 题目详情
如图,已知PA⊥面ABCD,PA=AB=AD=
1
2
CD,∠BAD=∠ADC=90°
(1)在面PCD上找一点M,使BM⊥面PCD;
(2)求由面PBC与面PAD所成角的二面角的余弦值.
(1)M为PC的中点,设PD中点为N,则MN=
1
2
CD,且MN
1
2
CD,∴MN=AB,MNAB.
再由 PA=AB=AD=
1
2
CD,可得ABMN为平行四边形,∴BMAN.
可得∠PAD=90°,∴AN⊥PD,又CD⊥AN,∴AN⊥面PCD,∴BM⊥面PCD.…(6分)
(2)延长CB交DA于E,∵AB=
1
2
CD,且AB
1
2
CD,∴AE=AD=PA,∴PD⊥PE.
又∴PE⊥CD,∴PE⊥面PCD,∴∠CPD为二面角C-PE-D的平面角.
再由PD=
2
AD,CD=2AD,可得tan∠CPD=
2

∴cos∠CPD=
3
3
.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在如图所示的多面体中,底面△ABC是边长为2的正三角形,DA和EC均垂直于平面ABC,且DA=2,EC=1.
(Ⅰ)求点A到平面BDE的距离;
(Ⅱ)求二面角B-ED-A的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在直角坐标系xOy中,设A(2,2),B(-2,-3),沿y轴把坐标平面折成120°的二面角后,AB的长是(  )
A.
35
B.6C.3
5
D.
53

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

球的半径为8,经过球面上一点作一个平面,使它与经过这点的半径成45°角,则这个平面截球的截面面积为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图是某直三棱柱ABC-DPQ被削去上底后的直观图与三视图的侧视图、俯视图.在直观图中,M是BD的中点.侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)求证:EM平面ABC;
(2)求出该几何体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.
(1)求直线BE和直线CD所成角的余弦值;
(2)在棱C1D1上是否存在一点F,使B1F平面A1BE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PD垂直于底面ABCD,底面ABCD是直角梯形,DCAB,∠BAD=90°,且AB=2AD=2DC=2PD=4,E为PA的中点.
(1)如图,若正视方向与AD平行,请在下面(答题区)方框内作出该几何体的正视图并求出正视图面积;
(2)证明:DE平面PBC;
(3)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如下的三个图中,左面的是一个长方体截去一个角所得多面体的直观图,它的主视图和左视图在右面画出(单位:cm).(1)按照给出的尺寸,求该多面体的体积;(2)在所给直观图中连结BC′,证明:BC′面EFG.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点.求证:
(1)BD1平面EAC;
(2)平面EAC⊥平面AB1C.

查看答案和解析>>

同步练习册答案