精英家教网 > 高中数学 > 题目详情
在如图所示的多面体中,底面△ABC是边长为2的正三角形,DA和EC均垂直于平面ABC,且DA=2,EC=1.
(Ⅰ)求点A到平面BDE的距离;
(Ⅱ)求二面角B-ED-A的正切值.
(Ⅰ)∵DE=BE=
5
,BD=2
2

∴S△BDE=
6
,设点A到平面BDE的距离为h.
又∵S△ABC=
3
,VB-ADE=VA-BDE
1
3
3
•2=
1
3
6
•h∴h=
2

即点A到平面BDE的距离为
2
.…(6分)
(Ⅱ)∵DA⊥平面ABC,∴平面DACE⊥平面ABC
取AC的中点M,连接BM,则BM⊥AC,BM⊥平面DACE.
过M作MN⊥DE,交DE于N,连接BN,则BN⊥DE,∴∠BNM是所求二面角的平面角.
设AC、DE的延长线相交于点P,∵DA=2EC,∴CP=2由△MNP△DAP得
MN
MP
=
DA
DP

MP=3,DA=2,DP=2
5
,∴MN=
3
5

又∵BM=
3
,∴tan∠BNM=
15
3
.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

为两条直线,为两个平面.下列四个命题中,正确的命题是             (   )
A.若所成的角相等,则B.若,则
C.若D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,用一副直角三角板拼成一直二面角A-BD-C,若其中给定AB=AD=2,∠BCD=90°,∠BDC=60°,
(Ⅰ)求三棱锥A-BCD的体积;
(Ⅱ)求点A到BC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知ABCD-A1B1C1D1是棱长为a的正方体,E、F分别是棱AA1和CC1的中点,G是A1C1的中点,求:
(1)点G到平面BFD1E的距离;
(2)四棱锥A1-BFD1E的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知P是边长为a的正六边形ABCDEF所成平面外一点,PA⊥AB,PA⊥AF,PA=a.则点P到边CD的距离是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个正三棱柱的每一条棱长都是a,则经过底面一边和相对侧棱的一个端点的截面(即图中△ACD)的面积为(  )
A.
7
4
a2
B.
7
2
a2
C.
6
3
a2
D.
7
a2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,ABDC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(1)证明:B1C1⊥CE;
(2)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为
2
6
.求线段AM的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在平行六面体ABCD-A1B1C1D1中,底面是边长为1的正方形,若A1AB=∠A1AD=600,且A1A=3,则A1C的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知PA⊥面ABCD,PA=AB=AD=
1
2
CD,∠BAD=∠ADC=90°
(1)在面PCD上找一点M,使BM⊥面PCD;
(2)求由面PBC与面PAD所成角的二面角的余弦值.

查看答案和解析>>

同步练习册答案