精英家教网 > 高中数学 > 题目详情
如图,已知ABCD-A1B1C1D1是棱长为a的正方体,E、F分别是棱AA1和CC1的中点,G是A1C1的中点,求:
(1)点G到平面BFD1E的距离;
(2)四棱锥A1-BFD1E的体积.
(1)由题得:BE=BF=FD1=ED1=
5
2
a

∴四边形BFD1E是棱形,连接EF和BD1
有A1C1EF,设H是EF中点,
连GH、GD1,则EF⊥GH,EF⊥HD1
∴EF⊥面GHD1,又EF?面BFD1E中,
∴平面BFD1E⊥平面GHD1
作GK⊥HD1,则GK⊥面BFD1E,
则G到平面的距离就是KG长.在RT△GHD1中,
1
2
GH•GD1=
1
2
GK•HD1
GH=
1
2
a
GD1=
2
2
a
HD1=
3
2
a

GK=
6
6
a

(2)∵A1C1EF,∴A1C1平面BFD1E,
∴G到平面BFD1E的距离就是四棱锥A1-BFD1E的高,
VA1-BFD1E=
1
3
S菱形BFD1E•GK=
1
3
1
2
EF•BD1•GK=
1
3
2
2
a•
3
a•
6
6
a=
1
6
a3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥A-BCD中,AD⊥平面ABC,∠BAC=120°,且AB=AC=AD=2,点E在BC上,且AE⊥AC.
(Ⅰ)求证:AC⊥DE;
(Ⅱ)求点B到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三棱锥P-ABC中,PA,PB,PC两两互相垂直,且PA=1,PB=PC=
2
,则点P到平面ABC的距离为(  )
A.
2
2
B.
2
C.
6
6
D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知矩形ABCD,M、N分别是AD、BC的中点,且AM=AB,将矩形沿MN折成直二面角,若P是DN上一动点,求P到BM距离的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥O-ABCD中,底面ABCD是边长为1的正方形,OA⊥底面ABCD,OA=2,M为OA中点.
(1)求证:直线BD⊥平面OAC;
(2)求点A到平面OBD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的多面体中,底面△ABC是边长为2的正三角形,DA和EC均垂直于平面ABC,且DA=2,EC=1.
(Ⅰ)求点A到平面BDE的距离;
(Ⅱ)求二面角B-ED-A的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图示,在底面为直角梯形的四棱椎P-ABCD中,ADBC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2
3
,BC=6.
(1)求证:BD⊥平面PAC;
(2)求二面角A-PC-D的正切值;
(3)求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

球的半径为8,经过球面上一点作一个平面,使它与经过这点的半径成45°角,则这个平面截球的截面面积为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知空间四边形中,分别是上的点,且直线交于点,求证三点共线.

查看答案和解析>>

同步练习册答案