精英家教网 > 高中数学 > 题目详情
三棱锥P-ABC,底面ABC为边长为2
3
的正三角形,平面PBC⊥平面ABC,PB=PC=2,D为AP上一点,AD=2DP,O为底面三角形中心.
(Ⅰ)求证DO面PBC;
(Ⅱ)求证:BD⊥AC;
(Ⅲ)求面DOB截三棱锥P-ABC所得的较大几何体的体积.
(本小题满分12分)
证明:(Ⅰ)连接AO并延长交BC于点E,
连接PE、DO.--------------(1分)
∵O为正三角形ABC的中心,
∴AO=2OE,
又AD=2DP,∴DOPE,--------------(2分)
∵DO?平面PBC,PE?平面PBC--------------(3分)
∴DO面PBC.--------------(4分)
(Ⅱ)∵PB=PC,且E为BC中点,∴PE⊥BC,
又平面PBC⊥平面ABC,∴PE⊥平面ABC.--------------(5分)
由(Ⅰ)知,DOPE,∴DO⊥平面ABC,
∴DO⊥AC--------------(6分)
连接BO,则AC⊥BO,
又DO∩BO=O,∴AC⊥平面DOB,--------------(7分)
∴AC⊥BD.--------------(8分)
(Ⅲ)连接BO并延长交AC于点F,连接DF,
则面DOB将三棱锥P-ABC截成三棱锥D-ABF和四棱锥B-DFCP两个几何体.--------------(9分)
VD-ABF=
1
3
×S△ABF×DO=
1
3
×
3
2
3
×
2
3
=
3
3
-----------(10分)
VP-ABC=
1
3
×S△ABC×PE=
1
3
×3
3
=
3
--------------(11分)
∴所截较大部分几何体的体积为
2
3
3
.--------------(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.
(1)求直线BE和直线CD所成角的余弦值;
(2)在棱C1D1上是否存在一点F,使B1F平面A1BE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形,
(Ⅰ)求证:MD平面APC;
(Ⅱ)求证:平面ABC⊥平面APC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在直三棱柱ABC-A1B1C1中,AB=A1B1,AC1⊥平面A1BD,D为AC的中点.(Ⅰ)求证:B1C平面A1BD;
(Ⅱ)求证:B1C1⊥平面ABB1A1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点.求证:
(1)BD1平面EAC;
(2)平面EAC⊥平面AB1C.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

空间四边形ABCD的对棱AD,BC成60°的角,且AD=BC=a,平行于AD与BC的截面分别交AB,AC,CD,BD于E、F、G、H.
(1)求证:四边形EFGH为平行四边形;
(2)E在AB的何处时截面EFGH的面积最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设四棱锥P-ABCD中,底面ABCD是边长为2的正方形,且PA⊥面ABCD,PA=AB,E为PD的中点.
(1)求证:直线PB面ACE
(2)求证:直线AE⊥面PCD
(3)求直线AC与平面PCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD是正三角形,底面四边形ABCD是菱形,∠DAB=60°,E为PC中点,F是线段DE上任意一点.
(1)求证:AD⊥PB;
(2)若点M为AB的中点,N为DC的中点,求证:平面EMN平面PAD;
(3)设P,A,F三点确定的平面为a,平面a与平面DEB的交线为l,试判断直线PA与l的位置关系,并证明之.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在四棱锥P-ABCD中,底面ABCD是∠DAB=60°,且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD.
(1)若G为AD边的中点,求证:BG⊥平面PAD;
(2)求二面角A-BC-P的大小.

查看答案和解析>>

同步练习册答案