精英家教网 > 高中数学 > 题目详情
12.四名同学报名参加三项课外活动,每人限报其中一项,不同报名方法共有(  )
A.12B.64C.81D.7

分析 根据题意,易得四名同学中每人有3种报名方法,由分步计数原理计算可得答案.

解答 解:四名同学报名参加三项课外活动,每人限报其中一项,
每人有3种报名方法;
根据分计数原理,可得共有3×3×3×3=81种不同的报名方法;
故选:C.

点评 本题考查分步计数原理的运用,解题时注意题干条件中“每人限报一项”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=Asin(x+φ)(A>0,0<φ<π),x∈R的最大值是1,其图象经过点M($\frac{π}{3}$,$\frac{1}{2}$).
(1)求函数f(x)的解析式;
(2)已知f($\frac{π}{4}$-α)=-$\frac{4}{5}$,且α∈(-$\frac{3π}{4}$,-$\frac{π}{4}$),求$\frac{1+sin2α+cos2α}{1+tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC的三个内角A,B,C所对的边分别为a、b、c,向量$\overrightarrow{m}$=(2sin$\frac{A}{2}$,$\sqrt{3}$),$\overrightarrow{n}$=(cosA,2cos2$\frac{A}{4}$-1),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求角A的大小;
(2)若|$\overrightarrow{a}$|=$\sqrt{7}$且△ABC的面积为$\frac{3\sqrt{3}}{2}$,求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=sinx+ax在R上单调递增,则实数a的取值范围为(  )
A.[-1,1]B.(-∞,-1]C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某校有6间不同的电脑室,每天晚上至少开放2间,求不同安排方案的种数,现有四位同学分别给出下列四个结果①$C_6^2$;②26-7;③$C_6^3+2C_6^4+C_6^5+C_6^6$,其中正确的结论是(  )
A.B.②与③C.①与②D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若下表数据对应的y关于x的线性回归方程为$\hat y=0.7x+a$,则a=0.35.
x3456
y2.5344.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.从2010名学生中选50人组成参观团,先用简单随机抽样方法剔除10人,再将其余2000人从0到1999编号,按等距系统抽样方法选取,若第一组采用抽签法抽到的号码是30,则最后一组入选的号码是(  )
A.1990B.1991C.1989D.1988

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=lnx-$\frac{1}{2}{x^2}$的单调递增区间为(  )
A.(-∞,-1)与(1,+∞)B.(0,1)∪(1,+∞)C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,圆O:x2+y2=4交x轴于点A,B(点A在x轴的负半轴上),点M为圆O上一动点,MA,MB分别交直线x=4于P,Q两点.
(1)求P,Q两点纵坐标的乘积;
(2)若点C的坐标为(1,0),连接MC交圆O于另一点N:
①试判断点C与以PQ为直径的圆的位置关系,并说明理由;
②记MA,NA的斜率分别为k1,k2,试探究k1k2是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案