精英家教网 > 高中数学 > 题目详情
4.已知函数$f(x)=lnx-ax+\frac{1-a}{x}-1(a>0)$
(1)设a>1,试讨论f(x)单调性;
(2)设g(x)=x2-2bx+4,当$a=\frac{1}{4}$时,任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b的取值范围.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)根据函数的单调性得到f(x1)≥f(1)=-$\frac{1}{2}$,问题转化为存在x2∈[1,2],使得$g({x_2})≤-\frac{1}{2}$,分离参数即得到$2b≥x+\frac{9}{2x}$在x∈[1,2]时有解,求出b的范围即可.

解答 解:(1)函数f(x)的定义域为(0,+∞),
$f'(x)=\frac{1}{x}-a-\frac{1-a}{x^2}$=$\frac{{-a{x^2}+x+a-1}}{x^2}=\frac{{-a{x^2}+x+a-1}}{x^2}=\frac{(-x+1)(ax+(a-1))}{x^2}$,
令f'(x)=0,则x1=1,${x_2}=\frac{1-a}{a}$(a>1,x2<0)舍去.
令f'(x)>0,则x>1,令f'(x)<0,则0<x<1,
所以当x∈(1,+∞)时,函数f(x)单调递增;当x∈(0,1)时,函数f(x)单调递减;
(2)当$a=\frac{1}{4}$时,
由(1)可知f'(x)=0的两根分别为x1=1,${x_2}=\frac{1-a}{a}=3$
令f'(x)>0,则0<x<1或x>3,令f'(x)<0,则1<x<3
可知函数f(x)在(0,1)上单调递减,在(1,2)上单调递增,
所以对任意的x1∈(0,2),有$f({x_1})≥f(1)=ln1-\frac{1}{4}+1-\frac{1}{4}-1=-\frac{1}{2}$,
由条件知存在x2∈[1,2],使f(x1)≥g(x2),
所以$g({x_2})≤-\frac{1}{2}$即存在x2∈[1,2],使得$g({x_2})≤-\frac{1}{2}$,
分离参数即得到$2b≥x+\frac{9}{2x}$在x∈[1,2]时有解,
由于$t=x+\frac{9}{2x}$(x∈[1,2])为减函数,故其最小值为$\frac{17}{4}$,
从而$2b≥\frac{17}{4}$$b≥\frac{17}{8}$,所以实数b的取值范围是$[\frac{17}{8},+∞)$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若f(x)=asin(x+$\frac{π}{4}$)+bsin(x-$\frac{π}{4}$)(ab≠0)是偶函数,则有序实数对(a,b)可以是(  )
A.(1,$\sqrt{3}$)B.(-1,$\sqrt{3}$)C.(1,1)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设实数x,y满足条件$\left\{{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}}\right.$,则目标函数z=7x-2y的最大值是16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|2x-1|+|x+1|.
(1)在给出的直角坐标系中作出函数y=f(x)的图象,并从图中找出满足不等式f(x)≤3的解集;
(2)若函数y=f(x)的最小值记为m,设a,b∈R,且有a2+b2=m,试证明:$\frac{1}{{{a^2}+1}}+\frac{4}{{{b^2}+1}}≥\frac{18}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.复数z满足z•(2-i)=3-4i(其中i为虚数单位),则复数|$\frac{z}{i}$|=(  )
A.$\frac{2\sqrt{5}}{3}$B.2C.$\frac{5\sqrt{5}}{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,正三角形ABC所在平面与梯形BCDE所在平面垂直,BE∥CD,BE=2CD=4,BE⊥BC,F为棱AE的中点.
(1)求证:直线AB⊥平面CDF;
(2)若异面直线BE与AD所成角为450,求二面角B-CF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设F是双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左焦点,M在双曲线的右支上,且MF的中点恰为该双曲线的虚轴的一个端点,则C的渐近线方程为(  )
A.$y=±\frac{1}{2}x$B.y=±2xC.$y=±\frac{{\sqrt{5}}}{5}x$D.$y=±\sqrt{5}x$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.△ABC的内角A、B、C的对边分别是a,b,c,且asinA-csinC=(a-b)sinB,c=3.则△ABC面积的最大值为(  )
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{9\sqrt{3}}{8}$D.$\frac{9\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1,a14=b4
(Ⅰ)求{an}的通项公式;
(Ⅱ)设cn=an+bn,求数列{cn}的前n项和Sn

查看答案和解析>>

同步练习册答案