精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2+loga(bx+
1+b2x2
),若f(2)=4.7,则f(-2)
 
考点:函数的值
专题:函数的性质及应用
分析:由已知得f(2)=4+loga(2b+
1+4b2
)=4.7,解得loga(2b+
1+4b2
)=0.7,由此能求出f(-2)=4+loga(-2b+
1+4b2
)=4-loga(2b+
1+4b2
)=3.3.
解答: 解:∵f(x)=x2+loga(bx+
1+b2x2
),f(2)=4.7,
∴f(2)=4+loga(2b+
1+4b2
)=4.7,
解得loga(2b+
1+4b2
)=0.7,
∴f(-2)=4+loga(-2b+
1+4b2

=4-loga(2b+
1+4b2

=4-0.7
=3.3.
故答案为:3.3.
点评:本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

圆x2+y2+2x+4y-3=1到直线x+y+1=0距离为
2
的点共有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

复利是把前一期的利息和本金加在一起作本金,再计算下一期利息的一种计算利息的方法.某人向银行贷款10万元,约定按年利率7%复利计算利息.
(1)写出x年后,需要还款总数y(单位:万元)和x(单位:年)之间的函数关系式;
(2)计算5年后的还款总额(精确到元);
(3)如果该人从贷款的第二年起,每年向银行还款x元,分5次还清,求每次还款的金额x.(精确到元)
(参考数据:1.073=1.2250,1.074=1.3108,1.075=1.402551,1.076=1.500730)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(λ+1,1)
n
=(λ+2,2)
,若(
m
+
n
)⊥(
m
-
n
)
,则实数λ的值为(  )
A、-4B、-3C、-2D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(α-2)xα是幂函数,则函数f(x)的奇偶性是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
4
5
,cosβ=-
5
13
,α,β∈(
π
2
,π)

(1)求sin(α+β),cos(α+β)的值;
(2)求cos
β
2
、tan
α
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=20.8,b=20.3c=ln
1
2
,则a,b,c三者由小到大的顺序为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
x
,x≥2
(x-1)3,x<2
,则f(-1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

y=sin(-2x+
π
3
)经过怎样变换得到y=sin2x的图象.

查看答案和解析>>

同步练习册答案