精英家教网 > 高中数学 > 题目详情
18.如图,在同一平面内,∠AOB=150°,∠AOC=120°,|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=3,|$\overrightarrow{OC}$|=4.
(1)试用$\overrightarrow{OB}$和$\overrightarrow{OC}$表示$\overrightarrow{OA}$;
(2)是否存在实数λ,使得$\overrightarrow{AD}$=$λ\overrightarrow{AC}$,$\overrightarrow{AC}$$•\overrightarrow{BD}$=0同时成立?若存在,求出λ的值,若不存在,请说明理由.

分析 (1)设$\overrightarrow{OA}=λ\overrightarrow{OB}+μ\overrightarrow{OC}$,则$\overrightarrow{OA}•\overrightarrow{OB}$=λ${\overrightarrow{OB}}^{2}$=9λ,$\overrightarrow{OA}•\overrightarrow{OC}$=$μ{\overrightarrow{OC}}^{2}$=16μ,列出方程解出λ,μ;
(2)假设存在λ,用$\overrightarrow{OB},\overrightarrow{OD}$表示出各向量,根据$\overrightarrow{AC}$$•\overrightarrow{BD}$=0列方程解出λ.

解答 解:(1)∠BOC=360°-∠AOB-∠AOC=90°,
$\overrightarrow{OA}•\overrightarrow{OB}=2×3×cos150°$=-3$\sqrt{3}$,$\overrightarrow{OA}•\overrightarrow{OC}$=2×4×cos120°=-4.$\overrightarrow{OB}•\overrightarrow{OC}=0$.
设$\overrightarrow{OA}=λ\overrightarrow{OB}+μ\overrightarrow{OC}$,则$\overrightarrow{OA}•\overrightarrow{OB}$=λ${\overrightarrow{OB}}^{2}$=9λ,$\overrightarrow{OA}•\overrightarrow{OC}$=$μ{\overrightarrow{OC}}^{2}$=16μ.
∴$\left\{\begin{array}{l}{9λ=-3\sqrt{3}}\\{16μ=-4}\end{array}\right.$,∴λ=-$\frac{\sqrt{3}}{3}$,μ=-$\frac{1}{4}$.
∴$\overrightarrow{OA}=-\frac{\sqrt{3}}{3}\overrightarrow{OB}-\frac{1}{4}\overrightarrow{OC}$.
(2)假设存在符合条件的λ,
$\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}$=(1+$\frac{\sqrt{3}}{3}$)$\overrightarrow{OB}$+$\frac{1}{4}$$\overrightarrow{OC}$,$\overrightarrow{AC}=\overrightarrow{OC}-\overrightarrow{OA}$=$\frac{\sqrt{3}}{3}\overrightarrow{OB}+\frac{5}{4}\overrightarrow{OC}$.
∴$\overrightarrow{AD}$=λ$\overrightarrow{AC}$=$\frac{\sqrt{3}λ}{3}\overrightarrow{OB}$+$\frac{5λ}{4}\overrightarrow{OC}$.$\overrightarrow{BD}=\overrightarrow{AD}-\overrightarrow{AB}$=($\frac{\sqrt{3}λ}{3}-\frac{\sqrt{3}}{3}-1$)$\overrightarrow{OB}$+($\frac{5λ}{4}-\frac{1}{4}$)$\overrightarrow{OC}$.
∵$\overrightarrow{AC}$$•\overrightarrow{BD}$=0,$\overrightarrow{OB}•\overrightarrow{OC}=0$,
∴$\frac{\sqrt{3}}{3}$($\frac{\sqrt{3}λ}{3}-\frac{\sqrt{3}}{3}-1$)${\overrightarrow{OB}}^{2}$+$\frac{5}{4}$($\frac{5λ}{4}-\frac{1}{4}$)${\overrightarrow{OC}}^{2}$=0,
即$\sqrt{3}$($\sqrt{3}λ$-$\sqrt{3}$-3)+5(5λ-1)=0,
解得λ=$\frac{8+3\sqrt{3}}{28}$.

点评 本题考查了平面向量的基本定理,平面向量的数量积运算,向量垂直与数量积的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.a1=1,an+1=$\frac{{3a}_{n}}{{2a}_{n}+1}$,则an=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在数列-1,0,$\frac{1}{9}$,$\frac{1}{8}$,…,$\frac{n-2}{{n}^{2}}$,…中,0.08是它的(  )
A.第100项B.第12项C.第10项D.第8项

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法正确的是(  )
A.1弧度的圆心角所对的弧长等于半径
B.大圆中1弧度的圆心角比小圆中1弧度的圆心角大
C.所有圆心角为1弧度的角所对的弧长都相等
D.用弧度表示的角都是正角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等差数列{an}的n项和为Sn,满足S5=-15,$\frac{3}{7}$<d<$\frac{1}{2}$,当Sn取得最小值时n的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知△ABC中,b=6,且sinA:sinB:sinC=5:6:3,则$\overrightarrow{AB}$$•\overrightarrow{BC}$+$\overrightarrow{BC}$$•\overrightarrow{CA}$+$\overrightarrow{CA}$$•\overrightarrow{AB}$的值为-31.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.数列{an}的通项公式为an=(-1)n-1•(4n-3),则它的前15项之和S15等于(  )
A.29B.-29C.30D.-30

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知等比数列{an}的公比为-$\frac{1}{2}$,则$\frac{{a}_{1}+{a}_{3}+{a}_{5}}{{a}_{2}+{a}_{4}+{a}_{6}}$的值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,在区间(-∞,0)单调递增且f(-1)=0.若实数a满足$f({log_2}a)-f({log_{\frac{1}{2}}}a)≤2f(1)$,则实数a的取值范围是(  )
A.[1,2]B.$(-∞,\frac{1}{2}]∪(1,2]$C.(0,2]D.$(0,\frac{1}{2}]∪(1,2]$

查看答案和解析>>

同步练习册答案