精英家教网 > 高中数学 > 题目详情
15.给出下列四个命题:①没有公共点的两条直线平行;②互相垂直的两条直线是相交直线;③既不平行也不相交的两条直线是异面直线;④不同在任何一个平面内的两条直线是异面直线.
其中正确的命题是(  )
A.①②B.②③C.①④D.③④

分析 在①中,两直线有可能异面;在②中,两直线有可能异面垂直;由异面直线的定义得③④正确.

解答 解:在①中,没有公共点的两条直线平行或异面,故①错误;
在②中,互相垂直的两条直线有可能相交且垂直,有可能异面垂直,
故互相垂直的两条直线也有可能是异面直线,故②错误;
在③中,由异面直线的定义得既不平行也不相交的两条直线是异面直线,故③正确;
在④中,由异面直线的定义得不同在任何一个平面内的两条直线是异面直线,故④正确.
故选:D.

点评 本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知直线$\sqrt{2}$ax+by=1(其中a,b为非零实数),与圆x+y2=1相交于A,B两点,O为坐标原点,且△AOB为直角三角形,则$\frac{1}{{a}^{2}}$+$\frac{2}{{b}^{2}}$的最小值为(  )
A.4B.2$\sqrt{2}$C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2sinωx,其中常数ω>0.
(Ⅰ)若y=f(x)在[-$\frac{π}{4}$,$\frac{2π}{3}$]上单调递增,求ω的取值范围;
(Ⅱ)令ω=2,将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位,得到函数y=g(x)的图象求y=g(x)的图象离原点O最近的对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}的前n项和为Sn=2n-3n,则a6+a7+a8=215.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知p:“方程$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{3}$=1”表示双曲线;q:“关于x的方程x2-mx+1=0没有实数根”.
若“¬p”和“p∨q”都是真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC=4,BC=3,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC1∥平面CDB1
(2)求直线AB1与平面BB1C1C所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线E:y=mx2(m>0),圆C:x2+(y-2)2=4,点F是抛物线E的焦点,点N(x0,y0)(x0>0,y0>0)为抛物线E上的动点,点M(2,-$\frac{1}{2}$),线段MF恰被抛物线E平分.
(1)求m的值;
(2)若y0>4,过点N向圆C作切线,求两条切线与x轴围成的三角形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=$\sqrt{lo{g}_{2}(2x-1)}$的定义域是(  )
A.($\frac{1}{2}$,1)B.($\frac{1}{2}$,1]C.($\frac{1}{2}$,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设α是第二象限角,P(x,4)为其终边上的一点,且cosα=$\frac{x}{5}$,则tan2α=$\frac{24}{7}$.

查看答案和解析>>

同步练习册答案