精英家教网 > 高中数学 > 题目详情
20.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC=4,BC=3,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC1∥平面CDB1
(2)求直线AB1与平面BB1C1C所成角的正切值.

分析 (1)设BC1∩CB1于点O,连结OD,则OD$\underset{∥}{=}$$\frac{1}{2}$$\overrightarrow{A{C}_{1}}$,由此能证明AC1∥平面CDB1
(2)推导出AC⊥BC,AC⊥C1C,从而∠AB1C是直线AB1与平面B1BCC1所成角,由此能求出直线AB1与平面BB1C1C所成角的正弦值.

解答 证明:(1)如图,设BC1∩CB1于点O,连结OD,
∵O、D分别是BC1和AB的中点,∴OD$\underset{∥}{=}$$\frac{1}{2}$$\overrightarrow{A{C}_{1}}$,
又∵OD?平面CDB1,AC1?平面CDB1
∴AC1∥平面CDB1
(2)∵AC=4,BC=3,AB=5,∴∠ACB=90°,即AC⊥BC,
在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,∴AC⊥C1C,
又BC∩CC1=C,∴AC⊥平面BCC1B1
∴直线B1C是斜线AB1在平面B1BCC1上的射影,
∴∠AB1C是直线AB1与平面B1BCC1所成角,
在Rt△AB1C中,B1C=5,AC=4,
∴tan∠AB1C=$\frac{4}{5}$,
即直线AB1与平面BB1C1C所成角的正弦值为$\frac{4}{5}$.

点评 本题考查线面平行的证明,考查直线面角的正弦值的求法,是中档题,解题时要认真审题,注意综合法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知直线l:x+y-4=0,定点P(2,0),E,F分别是直线l和y轴上的动点,则△PEF的周长的最小值为(  )
A.2$\sqrt{10}$B.6C.3$\sqrt{3}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“2<m<6”是“方程(6-m)x2+(m-2)y2=-m2+8m-12表示椭圆”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过M(1,2$\sqrt{2}$)作直线与抛物线y2=8x,有且只有一个公共点,这样的直线有(  )条.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.给出下列四个命题:①没有公共点的两条直线平行;②互相垂直的两条直线是相交直线;③既不平行也不相交的两条直线是异面直线;④不同在任何一个平面内的两条直线是异面直线.
其中正确的命题是(  )
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{log_2x+1,x≥0}\\{(\frac{1}{2})^x-1,x<0}\end{array}\right.$,则f(-1)+f(2)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)是定义在R上的函数,且满足①f(4)=0;②曲线y=f(x+1)关于点(-1,0)对称;③x∈(-4,0)时,f(x)=log2($\frac{x}{{e}^{|x|}}$+ex-m).若y=f(x)在x∈[-4,4]上恰有7个零点,则实数m的取值范围为(  )
A.(-∞,-e-2B.(-1-e-2,-e-2C.(-1-e-2,0)D.(-1-e-2,-1-3e-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期为π,当x=$\frac{π}{12}$时,f(x)取得最大值.
(1)求f(x)的解析式;
(2)求出f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}的首项为1,前n项和为Sn,且S1,S3,S9成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记Tn为数列{$\frac{1}{{a}_{n+1}{a}_{n}}$}的前n项和,求Tn

查看答案和解析>>

同步练习册答案