精英家教网 > 高中数学 > 题目详情
5.已知命题$p:x≠\frac{π}{6}+2kπ,k∈Z$;命题$q:sinx≠\frac{1}{2}$,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 判断若p则q的充分必要性,只需判断若¬q则¬p的充分必要性即可.

解答 解:若$p:x≠\frac{π}{6}+2kπ,k∈Z$;则$q:sinx≠\frac{1}{2}$的逆否命题是:
若¬q:sinx=$\frac{1}{2}$,则¬p:x=$\frac{π}{6}$+2kπ,显然不成立,是假命题,
反之,若¬p则¬q成立,
故¬q是¬p的必要不充分条件,
则p是q的必要不充分条件,
故选:B.

点评 本题考查了充分必要条件,考查四种命题的关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.直线l:x+$\sqrt{3}$y+6=0,则直线的倾斜角α等于(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2x+2ax+b,且$f(1)=\frac{5}{2}$,$f(2)=\frac{17}{4}$.
(Ⅰ)求实数a,b的值并判断函数f(x)的奇偶性;
(Ⅱ)判断函数f(x)在[0,+∞)上的单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),F(c,0)为椭圆右焦点,A为椭圆左顶点,且b2=ac,P为椭圆上不同于A的点,则使$\overrightarrow{PA}$•$\overrightarrow{PF}$=0的点P的个数为(  )
A.4B.3C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|2≤x≤6},B={x|2a≤x≤a+3}
(1)当a=2时,求A∪B
(2)当B⊆A时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知命题p:函数f(x)=lg(ax2-ax+1)的定义域是R;命题$q:幂函数y={x^{({1-{a^2}})}}$在第一象限为增函数,若“p∧q”为假,“p∨q”为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$sinx+cosx=\frac{{\sqrt{3}-1}}{2}$,x∈(0,π),则tanx=(  )
A.$-\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知$1+\frac{tanA}{tanB}=\frac{2c}{{\sqrt{3}b}}$
(1)求角A的大小;
(2)现在给出下列三个条件:①a=1;②2c-($\sqrt{3}$+1)b=0;③B=$\frac{π}{4}$,试从中选择两个条件可以确定△ABC,求所确定的△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},当B∪A=A时,则实数m的取值范围是m≥-1.

查看答案和解析>>

同步练习册答案