精英家教网 > 高中数学 > 题目详情
14.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知$1+\frac{tanA}{tanB}=\frac{2c}{{\sqrt{3}b}}$
(1)求角A的大小;
(2)现在给出下列三个条件:①a=1;②2c-($\sqrt{3}$+1)b=0;③B=$\frac{π}{4}$,试从中选择两个条件可以确定△ABC,求所确定的△ABC的面积.

分析 (1)由已知利用三角形内角和定理,同角三角函数基本关系式,正弦定理可得$\frac{sinC}{cosAsinB}$=$\frac{2sinC}{\sqrt{3}sinB}$,结合sinC≠0,可得cosA=$\frac{\sqrt{3}}{2}$,进而可求A.
(2)方法一:选择①②,由余弦定理,可求b,c的值,进而利用三角形面积公式即可得解.
方法二:选择①③,可求C=$\frac{7π}{12}$,由正弦定理可求c的值,利用三角形面积公式即可计算得解.

解答 解:(1)因为$1+\frac{tanA}{tanB}=\frac{2c}{{\sqrt{3}b}}$,
所以由正弦定理,得:1+$\frac{sinAcosB}{cosAsinB}$=$\frac{sin(A+B)}{cosAsinB}$=$\frac{2sinC}{\sqrt{3}sinB}$,
因为A+B+C=π,
所以:sin(A+B)=sinC,
所以$\frac{sinC}{cosAsinB}$=$\frac{2sinC}{\sqrt{3}sinB}$,
所以cosA=$\frac{\sqrt{3}}{2}$,可得:A=$\frac{π}{6}$.
(2)方法一    选择①②,可确定△ABC.
因为A=$\frac{π}{6}$,a=1,2c-($\sqrt{3}$+1)b=0,
由余弦定理,得:12=b2+($\frac{\sqrt{3}+1}{2}$b)2-2b×$\frac{\sqrt{3}+1}{2}$b×$\frac{\sqrt{3}}{2}$,
得b2=2,b=$\sqrt{2}$,c=$\frac{\sqrt{6}+\sqrt{2}}{2}$,
所以S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×\sqrt{2}×\frac{\sqrt{6}+\sqrt{2}}{2}×\frac{1}{2}$=$\frac{\sqrt{3}+1}{4}$.
方法二    选择①③,可确定△ABC.
因为B=$\frac{π}{4}$,所以C=$\frac{7π}{12}$,
又sin$\frac{7π}{12}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$,
所以由正弦定理得:c=$\frac{asinC}{sinA}$=$\frac{1×sin\frac{7π}{12}}{sin\frac{π}{6}}$=$\frac{\sqrt{6}+\sqrt{2}}{2}$,
所以S△ABC=$\frac{1}{2}$acsinB=$\frac{\sqrt{3}+1}{4}$.

点评 本题主要考查了三角形内角和定理,同角三角函数基本关系式,正弦定理,余弦定理,三角形面积公式在解三角形中的综合应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=-x(x-a)2(x∈R),其中a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)当a≠0时,求函数f(x)的极大值和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知命题$p:x≠\frac{π}{6}+2kπ,k∈Z$;命题$q:sinx≠\frac{1}{2}$,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)的定义域为[-1,1],则函数g(x)=ln(x+1)+f(2x)的定义域为$[{-\frac{1}{2},\frac{1}{2}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:
年份2007200820092010201120122013
年份代号t1234567
人均纯收入y2.93.33.64.44.85.25.9
若y关于t的线性回归方程为$\stackrel{∧}{y}$=0.5t+a,则据此该地区2017年农村居民家庭人均纯收入约为(  )
A.6.3千元B.7.5千元C.6.7千元D.7.8千元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=x2+lgx-3的一个零点所在区间为(  )
A.$(0,\frac{1}{2})$B.$(\frac{1}{2},1)$C.$(1,\frac{3}{2})$D.$(\frac{3}{2},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知幂函数f(x)的图象过点$(3,\frac{1}{9})$,则f(2)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=ax-1(a>0,且a≠1),当x∈(0,+∞)时,f(x)>0,且函数g(x)=f(x+1)-4的图象不过第二象限,则a的取值范围是(  )
A.(1,+∞)B.$(\frac{1}{2},1)$C.(1,3]D.(1,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=2|x+1|-|x-1|.
(1)画出函数f(x)的图象;
(2)解不等式|f(x)|>1.

查看答案和解析>>

同步练习册答案