精英家教网 > 高中数学 > 题目详情
11.把函数y=sin(2x+$\frac{4π}{3}}$)的图象向右平移φ(φ>0)个单位长度,所得的图象关于y轴对称,则φ的最小值为(  )
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.$\frac{5π}{6}$D.$\frac{5π}{12}$

分析 根据函数y=Asin(ωx+φ)的图象变换规律,可得所得图象对应的函数解析式为y=sin(2x+$\frac{4π}{3}}$-2φ),再根据所得图象关于y轴对称可得$\frac{4π}{3}}$-2φ=kπ+$\frac{π}{2}$,k∈z,由此求得φ的最小正值.

解答 解:将函数f(x)=sin(2x+$\frac{4π}{3}}$)的图象向右平移φ个单位,
所得图象对应的函数解析式为y=sin[2(x-φ)+$\frac{4π}{3}}$]=sin(2x+$\frac{4π}{3}}$-2φ)关于y轴对称,
则 $\frac{4π}{3}}$-2φ=kπ+$\frac{π}{2}$,k∈z,即 φ=$\frac{5π}{12}$-$\frac{kπ}{2}$,k∈z,
故φ的最小正值为:$\frac{5π}{12}$.
故选:D.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.对任意实数a,b,函数F(a,b)=$\frac{1}{2}$(a+b-|a-b|),如果函数f(x)=-x2+2x+3,g(x)=x+1,那么函数G(x)=F(f(x),g(x))的最大值等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.根据下列条件分别写出直线方程,并化成一般式方程.
(1)经过两点P1(5,-4)、P2(3,-2).
(2)在x轴和y轴上的截距分别是 $\frac{3}{2}$和-3
(3)倾斜角是120°,在y轴上的截距是4
(4)过点B(-3,4),且平行于y轴.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=$\frac{\sqrt{3x+2}}{{x}^{2}-1}$的定义域为{x|x$≥-\frac{2}{3}$且x≠1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=e3x-1,g(x)=ln(1+2x)+ax,f(x)的图象在x=$\frac{1}{3}$处的切线与g(x)的图象也相切.
(1)求a的值;
(2)当x>-$\frac{1}{2}$时,求证:f(x)>g(x);
(3)设p,q,r∈(-$\frac{1}{2}$,+∞)且p<q<r,A(p,g(p)),B(q,g(q)),C(r,g(r)),求证:kAB>kBC(其中kAB,kBC分别为直线AB与BC的斜率).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ax+$\frac{4}{x}$.
(1)从区间(-2,2)内任取一个实数a,设事件A={函数y=f(x)-2在区间(0,+∞)上有两个不同的零点},求事件A发生的概率;
(2)当a>0,x>0时,f(x)=ax+$\frac{4}{x}≥4\sqrt{a}$.若连续掷两次骰子(骰子六个面上标注的点数分别为1,2,3,4,5,6)得到的点数分别为a和b,记事件B={f(x)>b2在x∈(0,+∞)恒成立},求事件B发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.集合A={x|-x2+2x+3>0},B={x|$\frac{x-2}{x}$≥0},则A∩B=(  )
A.{x|-x<x<3}B.{x|x<0或x≥2}C.{x|-1<x<0}D.{x|-1<x<0或2≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.证明1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}-1}$>$\frac{n}{2}$(n∈N*),假设n=k时成立,当n=k+1时,左端增加的项数是2k

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow a$=(3,1),$\overrightarrow b$=(sinθ,cosθ),且$\overrightarrow a$∥$\overrightarrow b$,则求2+sinθcosθ-cos2θ的值.

查看答案和解析>>

同步练习册答案