精英家教网 > 高中数学 > 题目详情
1.已知$\overrightarrow a$=(3,1),$\overrightarrow b$=(sinθ,cosθ),且$\overrightarrow a$∥$\overrightarrow b$,则求2+sinθcosθ-cos2θ的值.

分析 利用向量共线,求出正弦函数与余弦函数关系式,然后化简所求的表达式为正弦函数与余弦函数的形式,代入求解即可.

解答 解:$\overrightarrow a$=(3,1),$\overrightarrow b$=(sinθ,cosθ),且$\overrightarrow a$∥$\overrightarrow b$,
可得sinθ=3cosθ.
所以2+sinθcosθ-cos2θ=$\frac{2si{n}^{2}θ+sinθcosθ+co{s}^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{18co{s}^{2}θ+3co{s}^{2}θ+co{s}^{2}θ}{9co{s}^{2}θ+co{s}^{2}θ}$=$\frac{11}{5}$

点评 本题考查了向量共线,同角三角函数基本关系式的应用,关键是掌握公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.把函数y=sin(2x+$\frac{4π}{3}}$)的图象向右平移φ(φ>0)个单位长度,所得的图象关于y轴对称,则φ的最小值为(  )
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.$\frac{5π}{6}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}满足a1=1,an+1=$\frac{a_n}{{3{a_n}+1}}$,则an=$\frac{1}{3n-2}$,,若bn=anan+1,则bn的前n项和为$\frac{n}{3n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow a$=(3,k),$\overrightarrow b$=(2,-1),$\overrightarrow a$⊥$\overrightarrow b$,则实数k的值为(  )
A.$-\frac{3}{2}$B.$\frac{3}{2}$C.6D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系中,点A的坐标是(2,0),O是原点,在直线l:y=-$\frac{1}{2}$x+2上求点Q,使得△QOA是以O为顶点的等腰三角形,则Q点坐标为(0,2)或($\frac{8}{5}$,$\frac{6}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题中正确的是((  )
A.若p∨q为真命题,则p∧q为真命题
B.“a>0,b>0”是“$\frac{b}{a}$+$\frac{a}{b}$≥2”的充分必要条件
C.命题“若x2-3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2-3x+2≠0”
D.命题p:?x0∈R,使得x02+x0-1<0,则¬p:?x∈R,使得x2+x-1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.9人排成3×3方阵(3行,3 列),从中选出3人分别担任队长、副队长、纪律监督员,要求这3人至少有两人位于同行或同列,则不同的任取方法数为468.(用数字回答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若A是半径为2 圆上一定点,在圆上其它位置任取一点B,连接AB,得到一条弦,则此弦的长度小于或等于半径长度的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.实数x分别取什么值时,复数z=x2+x-6+(x2-2x-15)i对应的点Z在:
(1)第三象限;
(2)第四象限;
(3)直线x-y-3=0上?

查看答案和解析>>

同步练习册答案