精英家教网 > 高中数学 > 题目详情
11.实数x分别取什么值时,复数z=x2+x-6+(x2-2x-15)i对应的点Z在:
(1)第三象限;
(2)第四象限;
(3)直线x-y-3=0上?

分析 (1)利用复数的实部与虚部的符号,得到不等式组,求解即可.
(2)类似(1)列出不等式组求解即可.
(3)求出点的坐标,代入直线方程,求解即可.

解答 解:因为x是实数,所以x2+x-6,x2-2x-15也是实数.
(1)当实数x满足$\left\{\begin{array}{l}{{x}^{2}+x-6<0}\\{{x}^{2}-2x-15<0}\end{array}\right.$
即-3<x<2时,点Z在第三象限.
(2)当实数x满足$\left\{\begin{array}{l}{{x}^{2}+x-6>0}\\{{x}^{2}-2x-15<0}\end{array}\right.$
即2<x<5时,点Z在第四象限.
(3)z=x2+x-6+(x2-2x-15)i对应的点Z(x2+x-6,x2-2x-15)
当实数x满足(x2+x-6)-(x2-2x-15)-3=0,
即x=-2时,点Z在直线x-y-3=0上.

点评 本题考查复数的几何意义,不等式组的解法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow a$=(3,1),$\overrightarrow b$=(sinθ,cosθ),且$\overrightarrow a$∥$\overrightarrow b$,则求2+sinθcosθ-cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在四棱锥A-BCDE中,平面ABC⊥面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=$\sqrt{2}$.
(1)求证:DE⊥面ACD
(2)求点E到面ABD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.AB和CD为平面内两条相交直线,AB上有m个点,CD上有n个点,且两直线上各有一个与交点重合,则以这m+n-1个点为顶点的三角形的个数是(  )
A.$C_m^1C_n^2+C_n^1C_m^2$B.$C_m^1C_n^2+C_{n-1}^1C_m^2$
C.$C_{m-1}^1C_n^2+C_n^1C_m^2$D.$C_{m-1}^1C_n^2+C_{n-1}^1C_{m-1}^2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知全集U={-3,-2,-1,0,1,2,3},集合A={-1,0,1},B={-2,-1,0}.
(1)求A∩B,A∪B;
(2)求(∁UA)∩B,(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}是首项为1的等差数列,且公差不为零.a1,a2,a6刚好是等比数列{bn}的前三项.
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为Sn,若数列{cn}满足c1=b1,cn+1-cn=bn,问是否存在正整数n,使得cn>Sn?若存在,求出n的值;若不存在,请说明理由.
(3)设An=cn-an,求证:An+2≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求和:
(1)求数列9,99,999,…的前n项和Sn
(2)求数列$\frac{1}{1×4}$,$\frac{1}{4×7}$,$\frac{1}{7×10}$,…的前n项和;
(3)求sin21°+sin22°+sin23°+…+sin289°的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列函数的值域
(1)y=x2-1,x∈{-1,0,1}
(2)y=-x2+x+2
(3)y=2x+3
(4)y=$\frac{2}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数的值域为R+的是(  )
A.f(x)=x2-2x+1B.f(x)=$\sqrt{{x}^{2}}$C.f(x)=$\frac{1}{{x}^{2}-2x+1}$D.f(x)=|2x-1|

查看答案和解析>>

同步练习册答案