精英家教网 > 高中数学 > 题目详情
19.AB和CD为平面内两条相交直线,AB上有m个点,CD上有n个点,且两直线上各有一个与交点重合,则以这m+n-1个点为顶点的三角形的个数是(  )
A.$C_m^1C_n^2+C_n^1C_m^2$B.$C_m^1C_n^2+C_{n-1}^1C_m^2$
C.$C_{m-1}^1C_n^2+C_n^1C_m^2$D.$C_{m-1}^1C_n^2+C_{n-1}^1C_{m-1}^2$

分析 根据题意,分两种情况,①若取出的2个点在直线CD上,是组合问题,由组合公式易得其情况数目,②若取出的2个点在直线AB上,也是组合问题,进而可得其情况数目,综合①②分析可得答案.

解答 解:如图,分两种情况,
①若取出的2个点在直线CD上,是组合问题,
即有Cm-11Cn2种情况,
②若取出的2个点在直线AB上,也是组合问题;
即其情况数目为Cn-11Cm-12
综合可得,有Cm-11Cn2+Cn-11Cm-12个;
故选:D.

点评 本题考查排列、组合的公式,注意结合构成三角形的条件,考查了分类讨论思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow a$=(3,k),$\overrightarrow b$=(2,-1),$\overrightarrow a$⊥$\overrightarrow b$,则实数k的值为(  )
A.$-\frac{3}{2}$B.$\frac{3}{2}$C.6D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若A是半径为2 圆上一定点,在圆上其它位置任取一点B,连接AB,得到一条弦,则此弦的长度小于或等于半径长度的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.运行如图的算法程序输出的结果应是(  ) 
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某连锁经营公司所属5个零售店某月的销售额和利润额资料如表:
商店名称ABCDE
销售额x/千万元35679
利润额y/百万元23345
(1)画出销售额和利润额的散点图;
(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程;
(3)据(2)的结果估计当销售额为1亿元时的利润额.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.掷两颗骰子得两数,则事件“两数之和大于5”的概率为$\frac{13}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.实数x分别取什么值时,复数z=x2+x-6+(x2-2x-15)i对应的点Z在:
(1)第三象限;
(2)第四象限;
(3)直线x-y-3=0上?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn=3n,数列{bn}满足b1=-1,bn+1=bn+(2n-1)(n∈N*).
(1)求数列{an}的通项公式an
(2)求数列{bn}的通项公式bn
(3)求数列{bn}的前n项和Tn
参考公式:12+22+32+…+n2=$\frac{1}{6}$n(n+1)(2n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.用一张长10cm、宽4cm的矩形铁皮围成圆柱形的侧面,则这个圆柱的体积为$\frac{40}{π}$cm3或$\frac{100}{π}$cm3

查看答案和解析>>

同步练习册答案