精英家教网 > 高中数学 > 题目详情
12.已知数列{an}满足a1=1,an+1=$\frac{a_n}{{3{a_n}+1}}$,则an=$\frac{1}{3n-2}$,,若bn=anan+1,则bn的前n项和为$\frac{n}{3n+1}$.

分析 把已知数列递推式变形,可得数列{$\frac{1}{{a}_{n}}$}是等差数列,求出等差数列的通项公式后可得数列{an}的通项公式,然后利用裂项相消法求得{bn}的前n项和.

解答 解:由an+1=$\frac{a_n}{{3{a_n}+1}}$,得$\frac{1}{{a}_{n+1}}=\frac{1}{{a}_{n}}+3$,即$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}=3$,
∴数列{$\frac{1}{{a}_{n}}$}是以$\frac{1}{{a}_{1}}=1$为首项,以3为公差的等差数列,
则$\frac{1}{{a}_{n}}=1+3(n-1)=3n-2$,
则${a}_{n}=\frac{1}{3n-2}$;
bn=anan+1=$\frac{1}{3n-2}•\frac{1}{3n+1}=\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$,
∴${S}_{n}=\frac{1}{3}(1-\frac{1}{4})+\frac{1}{3}(\frac{1}{4}-\frac{1}{7})+…+\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$=$\frac{1}{3}(1-\frac{1}{3n+1})=\frac{n}{3n+1}$.
故答案为:$\frac{1}{3n-2}$,$\frac{n}{3n+1}$.

点评 本题考查数列递推式,考查等差关系的确定,训练了裂项相消法求数列的通项公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.根据下列条件分别写出直线方程,并化成一般式方程.
(1)经过两点P1(5,-4)、P2(3,-2).
(2)在x轴和y轴上的截距分别是 $\frac{3}{2}$和-3
(3)倾斜角是120°,在y轴上的截距是4
(4)过点B(-3,4),且平行于y轴.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.集合A={x|-x2+2x+3>0},B={x|$\frac{x-2}{x}$≥0},则A∩B=(  )
A.{x|-x<x<3}B.{x|x<0或x≥2}C.{x|-1<x<0}D.{x|-1<x<0或2≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.证明1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}-1}$>$\frac{n}{2}$(n∈N*),假设n=k时成立,当n=k+1时,左端增加的项数是2k

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=a+bcosx+csinx的图象经过点A(0,1)及B($\frac{π}{2}$,1).
(1)已知b>0,求f(x)的单调递减区间;
(2)已知x∈(0,$\frac{π}{2}$)时,|f(x)|≤2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.平行四边形OADB的对角线交点为C,$\overrightarrow{BM}$=$\frac{1}{3}$$\overrightarrow{BC}$,$\overrightarrow{CN}$=$\frac{1}{3}$$\overrightarrow{CD}$,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,用$\overrightarrow{a}$、$\overrightarrow{b}$表示$\overrightarrow{OM}$、$\overrightarrow{ON}$、$\overrightarrow{MN}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.有下列说法:
①线性回归方程一般都有时间性;
②样本的取值范围会影响线性回归方程的适用范围;
③根据线性回归方程得到的预测值是预测变量的精确值
④在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;
⑤相关指数R2来刻画回归的效果,R2值越小,说明模型的拟合效果越好;
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow a$=(3,1),$\overrightarrow b$=(sinθ,cosθ),且$\overrightarrow a$∥$\overrightarrow b$,则求2+sinθcosθ-cos2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在四棱锥A-BCDE中,平面ABC⊥面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=$\sqrt{2}$.
(1)求证:DE⊥面ACD
(2)求点E到面ABD的距离.

查看答案和解析>>

同步练习册答案