分析 把已知数列递推式变形,可得数列{$\frac{1}{{a}_{n}}$}是等差数列,求出等差数列的通项公式后可得数列{an}的通项公式,然后利用裂项相消法求得{bn}的前n项和.
解答 解:由an+1=$\frac{a_n}{{3{a_n}+1}}$,得$\frac{1}{{a}_{n+1}}=\frac{1}{{a}_{n}}+3$,即$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}=3$,
∴数列{$\frac{1}{{a}_{n}}$}是以$\frac{1}{{a}_{1}}=1$为首项,以3为公差的等差数列,
则$\frac{1}{{a}_{n}}=1+3(n-1)=3n-2$,
则${a}_{n}=\frac{1}{3n-2}$;
bn=anan+1=$\frac{1}{3n-2}•\frac{1}{3n+1}=\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$,
∴${S}_{n}=\frac{1}{3}(1-\frac{1}{4})+\frac{1}{3}(\frac{1}{4}-\frac{1}{7})+…+\frac{1}{3}(\frac{1}{3n-2}-\frac{1}{3n+1})$=$\frac{1}{3}(1-\frac{1}{3n+1})=\frac{n}{3n+1}$.
故答案为:$\frac{1}{3n-2}$,$\frac{n}{3n+1}$.
点评 本题考查数列递推式,考查等差关系的确定,训练了裂项相消法求数列的通项公式,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-x<x<3} | B. | {x|x<0或x≥2} | C. | {x|-1<x<0} | D. | {x|-1<x<0或2≤x≤3} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com