精英家教网 > 高中数学 > 题目详情

【题目】已知点P(1,1),过点P动直线l与圆C:x2+y2﹣2y﹣4=0交与点A,B两点.
(1)若|AB|= ,求直线l的倾斜角;
(2)求线段AB中点M的轨迹方程.

【答案】
(1)解:由题意:圆C:x2+y2﹣2y﹣4=0,

化为圆的标准方程x2+(y﹣1)2=5,圆心C(0,1),r=

∵又|AB|=

当动直线l的斜率不存在时,直线l的方程为x=1时,显然不满足题意;

当动直线l的斜率存在时,设动直线l的方程为:y﹣1=k(x﹣1)即kx﹣y+1﹣k=0

故弦心距d= =

再由点到直线的距离公式可得d= =

解得:k=±

即直线l的斜率等于±

根据tanθ=k,

故得直线l的倾斜角等于


(2)解:由题意:线段AB中点为M,设M的坐标(x,y),

由垂径定理可知∠PMC=90°,故点M的轨迹是以CP为直径的圆,

又∵点C(0,1),P(1,1)

故M的轨迹方程为


【解析】(1)利用点斜式,设出过P点的直线l,利用与圆的弦长为 ,求出k的值,可得直线l的倾斜角;(2)设M的坐标(x,y),由垂径定理可知∠PMC=90°,故点M的轨迹是以CP为直径的圆.可得方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某特色餐馆开通了美团外卖服务,在一周内的某特色菜外卖份数(份)与收入(元)之间有如下的对应数据:

外卖份数(份)

2

4

5

6

8

收入(元)

30

40

60

50

70

(1)画出散点图;

(2)求回归直线方程;

(3)据此估计外卖份数为12份时,收入为多少元.

注:①参考公式:线性回归方程系数公式

②参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阿海准备购买“海马”牌一辆小汽车,其中购车费用12.8万元,每年的保险费、汽油费约为0.95万元,年维修、保养费第一年是0.1万元,以后逐年递增0.1万元.请你帮阿海计算一下这种汽车使用多少年,它的年平均费用最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解高二年级学生对教师教学的意见,打算从高二年级883名学生中抽取80名进行座谈,若采用下面的方法选取:先用简单随机抽样从883人中剔除3人,剩下880人再按系统抽样的方法进行,则每人入选的概率是(
A.
B.
C.
D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1 . 求证:

(1)直线DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数

(1)当时,求不等式的解集;

(2)若不等式的解集为空集,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(k)是满足不等式log2x+log2(52k1﹣x)≥2k(k∈N*)的自然数x的个数.
(1)求f(k)的函数解析式;
(2)Sn=f(1)+2f(2)+…+nf(n),求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,关于实数的不等式的解集为

1)当时,解关于的不等式:

2)是否存在实数,使得关于的函数)的最小值为?若存在,求实数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】钝角三角形ABC的面积是 ,AB=1,BC= ,则AC=(
A.5
B.
C.2
D.1

查看答案和解析>>

同步练习册答案