精英家教网 > 高中数学 > 题目详情
16.设a,x>0,化简(27a${\;}^{-\frac{1}{3}}$•$\sqrt{{x}^{-\frac{1}{3}}{a}^{2}•\root{4}{{x}^{\frac{4}{3}}}}$)${\;}^{\frac{1}{3}}$的结果是(  )
A.3a${\;}^{\frac{2}{9}}$xB.3a${\;}^{\frac{1}{3}}$C.3a${\;}^{\frac{2}{9}}$D.3a${\;}^{\frac{1}{3}}$x2

分析 直接利用根式以及有理指数幂的运算法则化简求解即可.

解答 解:(27a${\;}^{-\frac{1}{3}}$•$\sqrt{{x}^{-\frac{1}{3}}{a}^{2}•\root{4}{{x}^{\frac{4}{3}}}}$)${\;}^{\frac{1}{3}}$
=3${a}^{-\frac{1}{3}×\frac{1}{3}}•{x}^{-\frac{1}{3}×\frac{1}{2}}{a}^{\frac{1}{3}}•{x}^{\frac{1}{3}×\frac{1}{2}}$
=3a${\;}^{\frac{2}{9}}$.
故选:C.

点评 本题考查根式以及有理指数幂的运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=x2+2ax+b,当a≥1时,若存在x0∈[-1,1],使得|f(x0)|≥m对一切b∈R恒成立,则实数m的最大值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{a{x}^{2}+1}{bx+c}$是奇函数,且f(1)=2,f(2)=$\frac{5}{2}$.
(1)求函数f(x)的表达式;
(2)当0<x<1时,用函数单调性的定义研究函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{-2x},x≤-1}\\{ax+3,x>-1}\end{array}\right.$为单调函数,则实数a的取值范围是(  )
A.(-1,0]B.[-1,0)C.(-1,0)D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2-2x+3,x∈(0,3].
(1)当a=1时,求函数f(x)的值域;
(2)若集合A={x|f(x)=0,0<x≤3}≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知A=$\frac{sin(kπ-α)cos[(k-1)π-α]}{sin[(k+1)π+α]cos(kπ+α)}$(k∈Z),则该值构成的集合是(  )
A.{1,-1,2,-2}B.{-1,1}C.{-1}D.{1,-1,0,2,-2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}满足an+an+4=an+1+an+3(n∈N*),那么必有(  )
A.{an}是等差数列B.{a2n-1}是等差数列C.{a2n}是等差数列D.{a3n}是等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列各式的值:
(1)log3(27×92);
(2)lg1002
(3)lg0.00001;
(4)ln$\sqrt{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.向平面区域{(x,y)|x2+y2≤1}内随机投入一点,则该点落在区域$\left\{\begin{array}{l}2x+y≤1\\ x≥0\\ y≥0\end{array}\right.$内的概率等于$\frac{1}{4π}$.

查看答案和解析>>

同步练习册答案