分析 (1)利用函数的解析式,确定函数的对称轴和图象的开口方向,运用二次函数的性质,即可求得函数f(x)的值域.
(2)分类讨论,利用方程根的讨论方法,即可求实数a的取值范围.
解答 解:(1)∵当a=1时,函数f(x)=x2-2x+3,
∴f(x)=(x-1)2+2,
对称轴为x=1,图象是开口向上的抛物线,
∵离对称轴越近,其对应的函数值越小,
又∵x∈[0,3],
∴当x=1时,f(x)取得最小值为2,当x=3时,f(x)取得最大值为6,
∴f(x)的值域为[2,6];
(2)a<0,则f(3)≤0,∴9a-6+3≤0,∴a≤$\frac{1}{3}$,∴a<0;
a=0,-2x+3=0,可得x=1.5,满足题意;
a>0,△=4-12a=0,可得a=$\frac{1}{3}$,x=3,满足题意;
△>0,可得a<$\frac{1}{3}$,则f(3)≥0且0<$\frac{1}{a}$≤3,无解,
∴a≤0或a=$\frac{1}{3}$.
点评 本题考查了二次函数的性质以及求函数的值域问题.求函数的值域要注意考虑定义域的取值,再根据函数的解析式进行判断该使用何种方法求解值域.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 根据古典概型概率计算公式P(A)=$\frac{{n}_{A}}{n}$求出的值是事件A发生的概率的精确值 | |
| B. | 根据几何概型概率计算公式P(A)=$\frac{{μ}_{A}}{{μ}_{Ω}}$求出的值是事件A发生的概率的精确值 | |
| C. | 根据古典概型试验,用计算机或计算器产生随机整数统计试验次数N和事件A发生的次数N1,得到的值$\frac{{N}_{1}}{N}$是P(A)的近似值 | |
| D. | 根据几何概型试验,用计算机或计算器产生均匀随机数统计试验次数N和事件A发生次数N1,得到的值$\frac{{N}_{1}}{N}$是P(A)的精确值 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3a${\;}^{\frac{2}{9}}$x | B. | 3a${\;}^{\frac{1}{3}}$ | C. | 3a${\;}^{\frac{2}{9}}$ | D. | 3a${\;}^{\frac{1}{3}}$x2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com