精英家教网 > 高中数学 > 题目详情
19.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足$\frac{a}{sinA}$=$\frac{c}{\sqrt{3}cosC}$
(1)求角C的大小;
(2)若B+C=$\frac{7π}{12}$,b=$\sqrt{6}$,求c.

分析 (1)由正弦定理可得:$\frac{a}{sinA}=\frac{c}{sinC}$,又$\frac{a}{sinA}$=$\frac{c}{\sqrt{3}cosC}$,可得sinC=$\sqrt{3}$cosC,即tanC=$\sqrt{3}$,解出即可.
(2)由C=$\frac{π}{3}$,又B+C=$\frac{7π}{12}$,可得B=$\frac{π}{4}$.由正弦定理可得:$\frac{b}{sinB}=\frac{c}{sinC}$,解出即可.

解答 解:(1)由正弦定理可得:$\frac{a}{sinA}=\frac{c}{sinC}$,又$\frac{a}{sinA}$=$\frac{c}{\sqrt{3}cosC}$,∴sinC=$\sqrt{3}$cosC,∴tanC=$\sqrt{3}$,∵C∈(0,π),∴C=$\frac{π}{3}$.
(2)∵C=$\frac{π}{3}$,又B+C=$\frac{7π}{12}$,∴B=$\frac{π}{4}$.
由正弦定理可得:$\frac{b}{sinB}=\frac{c}{sinC}$,
∴$c=\frac{bsinC}{sinB}$=$\frac{\sqrt{6}sin\frac{π}{3}}{sin\frac{π}{4}}$=$\frac{3}{2}$.

点评 本题考查了正弦定理余弦定理解三角形,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设函数f(t)=$\left\{\begin{array}{l}{3×{2}^{t}-24,0≤t≤10}\\{-{2}^{t-5}+128,10<t≤15}\end{array}\right.$.
(1)求使f(t)=0成立的t的值;
(2)求函数f(t)取得最大值和最小值时对应的t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=2x2-(2a-1)x-1;
(1)若a<1,判断f(x)在区间($\frac{1}{4}$,+∞)的单调性并用定义证明;
(2)若f(x)在区间[-1,2]上不是单调函数,用集合表示实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{a{x}^{2}+1}{bx+c}$是奇函数,且f(1)=2,f(2)=$\frac{5}{2}$.
(1)求函数f(x)的表达式;
(2)当0<x<1时,用函数单调性的定义研究函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知0≤x≤2,试求函数y=($\frac{1}{4}$)x-($\frac{1}{2}$)x+1的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{-2x},x≤-1}\\{ax+3,x>-1}\end{array}\right.$为单调函数,则实数a的取值范围是(  )
A.(-1,0]B.[-1,0)C.(-1,0)D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2-2x+3,x∈(0,3].
(1)当a=1时,求函数f(x)的值域;
(2)若集合A={x|f(x)=0,0<x≤3}≠∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}满足an+an+4=an+1+an+3(n∈N*),那么必有(  )
A.{an}是等差数列B.{a2n-1}是等差数列C.{a2n}是等差数列D.{a3n}是等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若sin(α+β)=p,sin(α-β)=q,则$\frac{tanα}{tanβ}$=$\frac{p+q}{p-q}$.

查看答案和解析>>

同步练习册答案