精英家教网 > 高中数学 > 题目详情

已知函数(其中为自然对数的底数).
(1)求函数的单调区间;
(2)定义:若函数在区间上的取值范围为,则称区间为函数的“域同区间”.试问函数上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.

(1)单调递增区间为,单调递减区间为;(2)详见解析.

解析试题分析:(1)先求出函数的定义域与导数,求出极值点,解有关导数的不等式,从而确定函数的单调增区间和减区间;(2)结合(1)中的结论可知,函数在区间上单调递增,根据定义得到,问题转化为求方程在区间上的实数根,结合导数来讨论方程在区间上的实根的个数,从而确定函数在区间上是否存在“域同区间”.
试题解析:(1),定义域为

,即,解得;令,即,解得
故函数的单调递增区间为,单调递减区间为
(2)由(1)知,函数在区间上是单调递增函数,
假设函数在区间上存在“域同区间”,则有
则方程在区间上有两个相异实根,
构造新函数,定义域为

,则
时,,则恒成立,
因此函数在区间上单调递增,
故函数在区间上存在唯一零点,则有
时,;当时,
故函数在区间上是单调递减函数,在区间上是单调递增函数,
因为
所以函数在区间有且只有一个零点,
这与方程有两个大于的实根相矛盾,所以假设不成立!
所以函数在区间

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数f(x)=x2-(a-2)x-alnx.
(1)求函数f(x)的单调区间;
(2)若函数f(x)有两个零点,求满足条件的最小正整数a的值;
(3)若方程f(x)=c有两个不相等的实数根x1、x2,求证:f′>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=xh(x)=,设F(x)=f(x)-h(x),求F(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一矩形铁皮的长为8 cm,宽为5 cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当a=2时,求函数y=f(x)的图象在x=0处的切线方程;
(2)判断函数f(x)的单调性;
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x3ax2axg(x)=2x2+4xc.
(1)试问函数f(x)能否在x=-1时取得极值?说明理由;
(2)若a=-1,当x∈[-3,4]时,函数f(x)与g(x)的图象有两个公共点,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)若在区间上是减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在R上的函数同时满足以下条件:
在(0,1)上是减函数,在(1,+∞)上是增函数;
是偶函数;
在x=0处的切线与直线y=x+2垂直.
(1)求函数的解析式;
(2)设g(x)=,若存在实数x∈[1,e],使g(x)<,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求曲线yx3在点(3,27)处的切线与两坐标轴所围成的三角形的面积.

查看答案和解析>>

同步练习册答案