【题目】在直角坐标系中,直线的参数方程为 (t为参数),直线的参数方程为 (为参数).设与的交点为,当变化时,的轨迹为曲线
(1)写出的普通方程;
(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,设,为与的交点,求的极径.
【答案】(1);(2).
【解析】
(1)分别消掉参数t与m可得直线l1与直线l2的普通方程为y=k(x-2)①与x=-2+ky②;联立①②,消去k可得C的普通方程为x2-y2=4;
(2)将l的极坐标方程与曲线C的极坐标方程联立,可得关于θ的方程,解得tanθ,即可求得l与C的交点M的极径为ρ.
(1)消去参数t,得l1的普通方程l1:y=k(x-2);
消去参数m,得l2的普通方程l2:y= (x+2). 设P(x,y),由题设得
消去k,得x2-y2=4(y≠0),所以C的普通方程为x2-y2=4(y≠0).
(2)C的极坐标方程为ρ2(cos2θ-sin2θ)=4(0<θ<2π,θ≠π),
联立得cos θ-sin θ=2(cos θ+sin θ).
故tan θ=-,从而cos2θ=,sin2θ=.
代入ρ2(cos2θ-sin2θ)=4,得ρ2=5,所以l与C的交点M的极径为.
科目:高中数学 来源: 题型:
【题目】已知8件不同的产品中有3件次品,现对它们一一进行测试,直至找到所有次品.
(1)若恰在第2次测试时,找到第一件次品,第6次测试时,才找到最后一件次品,则共有多少种不同的测试方法?
(2)若至多测试5次就能找到所有次品,则共有多少种不同的测试方法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A.已知幂函数在上单调递减则或
B.函数的有两个零点,一个大于0,一个小于0的一个充分不必要条件是.
C.已知函数,若,则的取值范围为
D.已知函数满足,,且与的图像的交点为则的值为8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的短轴长为4,离心率为,斜率不为0的直线l与椭圆恒交于A,B两点,且以AB为直径的圆过椭圆的右顶点M.
(1)求椭圆的标准方程;
(2)直线l是否过定点,如果过定点,求出该定点的坐标;如果不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如表提供了工厂技术改造后某种型号设备的使用年限和所支出的维修费(万元)的几组对照数据:
(年) | 2 | 3 | 4 | 5 | 6 |
(万元) | 1 | 2.5 | 3 | 4 | 4.5 |
参考公式:,.
(1)若知道对呈线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com