精英家教网 > 高中数学 > 题目详情
16.${(x-\frac{1}{{\root{3}{x}}})^8}$的展开式中,x4的系数为-56.

分析 利用二项式展开式的通项公式,令x的指数为4,求出r的值,即可得出展开式中x4的系数.

解答 解:${(x-\frac{1}{{\root{3}{x}}})^8}$展开式的通项公式为:
Tr+1=${C}_{8}^{r}$•x8-r•${(-\frac{1}{\root{3}{x}})}^{r}$=(-1)r•${C}_{8}^{r}$•${x}^{8-\frac{4r}{3}}$,
令8-$\frac{4r}{3}$=4,解得r=3;
∴展开式中x4的系数为:
(-1)3•${C}_{8}^{3}$=-56.
故答案为:-56.

点评 本题考查了利用二项式展开式的通项公式求某一项的系数问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=loga(1+x),g(x)=loga(1-x),(a>0,a≠1)
(1)若a=2,且函数f(x)的定义域为[3,36],求f(x)的最值;
(2)求使f(x)-g(x)>0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x|+|x+1|.
(1)解关于x的不等式f(x)>3;
(2)若?x∈R,使得m2+3m+2f(x)≥0成立,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图后,输出的值为4,则p的取值范围是(  )
A.$\frac{3}{4}<p≤\frac{7}{8}$B.$p>\frac{5}{16}$C.$\frac{7}{8}≤p<\frac{5}{16}$D.$\frac{7}{8}<p≤\frac{5}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.平面上动点P到点F(0,1)的距离比它到直线l:y=-2的距离小1.
(Ⅰ) 求动点P的轨迹C的方程;
(Ⅱ)过点F作直线与曲线C交于两点A,B,与直线l交于点M,求|MA|•|MB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若复数z满足i•z=$\frac{1}{2}$(1+i),则z的虚部是(  )
A.-$\frac{1}{2}$iB.$\frac{1}{2}$iC.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,直三棱柱ABC-A1B1C1中,AC⊥AB,AB=2AA,M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.
(1)若BE=3EC,求证:DE∥平面A1MC1
(2)若AA1=l,求三棱锥A-MA1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)是二次函数,若f(x)ex的一个极值点为x=-1,则下列图象不可能为f(x)图象的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6..已知函数f(x)=aex(a≠0),g(x)=x2
(Ⅰ)若曲线c1:y=f(x)与曲线c2:y=g(x)存在公切线,求a最大值.
(Ⅱ)当a=1时,F(x)=f(x)-bg(x)-cx-1,且F(2)=0,若F(x)在(0,2)内有零点,求实数b的取值范围.

查看答案和解析>>

同步练习册答案