精英家教网 > 高中数学 > 题目详情
已知抛物线C:y=(x+1)2与圆M:(x-1)2+()2=r2(r>0)有一个公共点,且在A处两曲线的切线为同一直线l.
(Ⅰ)求r;
(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离。
   


【命题意图】本试题考查了抛物线与圆的方程,以及两个曲线的公共点处的切线的运用,并在此基础上求解点到直线的距离。
【点评】该试题出题的角度不同于平常,因为涉及的是两个二次曲线的交点问题,并且要研究两曲线在公共点出的切线,把解析几何和导数的工具性结合起来,是该试题的创新处。另外对于在第二问中更是难度加大了,出现了另外的两条公共的切线,这样的问题对于我们以后的学习也是一个需要练习的方向。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

抛物线过焦点F的直线交抛物线于A、B两点,O为原点,若面积最小值为8。
(1)求P值
(2)过A点作抛物线的切线交y轴于N,则点M在一定直线上,试证明之。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,直线与双曲线C:的渐近线交于两点,记.任取双曲线C上的点,若),则满足的一个等式是           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在平面直角坐标系中,已知点P是动点,且三角形的三边所在直线的斜率满足
(Ⅰ)求点P的轨迹的方程;
(Ⅱ)若Q是轨迹上异于点的一个点,且,直线交于点M,试探
究:点M的横坐标是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存过点(2,1)的直线与椭圆相交于不同的两点,满足?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在ΔABC中,顶点A,B, C所对三边分别是a,b,c已知B(-1, 0), C(1, 0),且b,a, c成等差数列.
(I )求顶点A的轨迹方程;
(II) 设顶点A的轨迹与直线y=kx+m相交于不同的两点M、N,如果存在过点P(0,-)的直线l,使得点M、N关于l对称,求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆内有圆,如果圆的切线与椭圆交A、B两点,且满足(其中为坐标原点).
(1)求证:为定值;
(2)若达到最小值,求此时的椭圆方程;
(3)在满足条件(2)的椭圆上是否存在点P,使得从P向圆所引的两条切线互相垂直,如果存在,求出点的坐标,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线与曲线相切于点,则等于(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

圆锥曲线的准线方程是
A.B.
C.D.

查看答案和解析>>

同步练习册答案