精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex-ax-1(a为常数),曲线y=f(x)在与y轴的交点A处的切线斜率为-1.
(Ⅰ)求a的值及函数f(x)的单调区间;
(Ⅱ)证明:当x>0时,ex>x2+1;
(Ⅲ)证明:当n∈N*时,1+
1
2
+
1
3
+…+
1
n
>ln
(n+1)3
(3e)n
考点:导数在最大值、最小值问题中的应用,利用导数研究函数的单调性,数学归纳法
专题:导数的综合应用
分析:(Ⅰ)求出函数的f′(x)=ex-a.通过f′(x)=ex-2>0,即可求解函数f(x)在区间(-∞,ln2)上单调递减,在(ln2,+∞)上单调递增.
(Ⅱ)求出f(x)的最小值,化简f(x)≥1-ln4.构造g(x)=ex-x2-1,通过g′(x)>0.判断g(x)在(0,+∞)上单调递增,得到g(x)>g(0),推出结果.
(Ⅲ)首先证明:当x>0时,恒有ex
1
3
x3
.令h(x)=ex-
1
3
x3
,则h′(x)=ex-x2.推出h(x)在(0,+∞)上单调递增,得到x+ln3>3lnx.利用累加法推出1+
1
2
+
1
3
+…+
1
n
>ln
(n+1)3
3nen
解答: 解:(Ⅰ)由f(x)=ex-ax-1,得f′(x)=ex-a.
又f′(0)=1-a=-1,所以a=2.所以f(x)=ex-2x-1,f′(x)=ex-2.
由f'(x)=ex-2>0,得x>ln2.
所以函数f(x)在区间(-∞,ln2)上单调递减,在(ln2,+∞)上单调递增.…(4分)
(Ⅱ)证明:由(Ⅰ)知f(x)min=f(ln2)=eln2-2ln2-1=1-ln4
所以f(x)≥1-ln4,即ex-2x-1≥1-ln4,ex-2x≥2-ln4>0.
令g(x)=ex-x2-1,则g'(x)=ex-2x>0.
所以g(x)在(0,+∞)上单调递增,所以g(x)=ex-x2-1>g(0)=0,即ex>x2+1.…(8分)
(Ⅲ)首先证明:当x>0时,恒有ex
1
3
x3

证明如下:令h(x)=ex-
1
3
x3
,则h'(x)=ex-x2
由(Ⅱ)知,当x>0时,ex>x2,所以h(x)>0,所以h(x)在(0,+∞)上单调递增,
所以h(x)>h(0)=1>0,所以ex
1
3
x3

所以x>ln(
1
3
x3)
,即x+ln3>3lnx.
依次取x=
2
1
3
2
,…,
n+1
n
,代入上式,则
2
1
+ln3>3ln
2
1
3
2
+ln3>3ln
3
2
,…
n+1
n
+ln3>3ln
n+1
n

以上各式相加,有
2
1
+
3
2
+…+
n+1
n
+nln3>3ln(
2
1
×
3
2
×…×
n+1
n
)

所以n+(1+
1
2
+
1
3
+…+
1
n
)+nln3>3ln(n+1)

所以1+
1
2
+
1
3
+…+
1
n
>3ln(n+1)-nln3-n
,即1+
1
2
+
1
3
+…+
1
n
>ln
(n+1)3
3nen
.…(14分)
另解:用数学归纳法证明(略)
点评:本题考查函数的导数的应用,构造法以及累加法的应用,函数的导数的最值的应用,考查分析问题解决问题的能力.是难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=x2+2x+3(x≥0)的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果直线l将圆C:(x-2)2+(y+3)2=13平分,那么坐标原点O到直线l的最大距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项的和Sn,an=1+2+22+…+2n-1,则sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(a+1)lnx+x2-x (a∈R),
(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)设a>0,如果对任意x1,x2∈(0,+∞),均有f(x1)-f(x2)>3|x1-x2|,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:A(2,2),B(5,3),C(3,-1),D(6,0)四点共圆,并求出此圆的圆心和半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-x-2lnx.
①求函数f(x)在点(1,-
1
2
)处的切线方程.
②求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知导函数y=f′(x)的图象如图所示,请根据图象写出原函数y=f(x)的递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,-1),B(4,0),C(2,2),平面区域D是所有满足
AP
=λ
AB
AC
(1<λ≤a,1<μ≤b)的点P(x,y)组成的区域.若区域D的面积为8,则4a+b的最小值为 (  )
A、5
B、4
2
C、9
D、5+4
2

查看答案和解析>>

同步练习册答案