分析 (1)在△ABC中使用余弦定理解出AC,利用勾股定理的逆定理得出AC⊥AB,根据面面垂直的性质得出AC⊥平面ABEF;
(2)由CD∥AB可得CD∥平面ABEF,于是VD-AEF=VC-AEF=$\frac{1}{3}{S}_{△AEF}•AC$.
解答 解:(1)在△ABC中,AB=1,BC=2,$∠CBA=\frac{π}{3}$,
由余弦定理得AC=$\sqrt{A{B}^{2}+B{C}^{2}-2AB•BCcos∠CBA}$=$\sqrt{3}$.
∴AB2+AC2=BC2,∴AC⊥AB.
∵平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,AC?平面ABCD,
∴AC⊥平面ABEF.
(2)∵四边形ABCD是平行四边形,∴CD∥AB,
∵CD?平面ABEF,AB?平面ABEF,
∴CD∥平面ABEF,
∴VD-AEF=VC-AEF=$\frac{1}{3}{S}_{△AEF}•AC$=$\frac{1}{3}×\frac{1}{2}×AF×AB×AC$=$\frac{1}{3}×\frac{1}{2}×1×3×\sqrt{3}$=$\frac{\sqrt{3}}{2}$.
点评 本题考查了面面垂直的性质,线面垂直的判定,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{3\sqrt{5}}{5}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | $\frac{3\sqrt{7}}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | e3+1 | B. | e3+2 | C. | e3+e+1 | D. | e3+e+2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | $\frac{2}{5}$ | C. | $\frac{7}{5}$ | D. | $\frac{5}{7}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com