精英家教网 > 高中数学 > 题目详情
3.若sinα+cosα=tanα,(0<α<$\frac{π}{2}$),则α∈(  )
A.(0,$\frac{π}{6}$)B.($\frac{π}{6}$,$\frac{π}{4}$)C.($\frac{π}{4}$,$\frac{π}{3}$)D.($\frac{π}{3}$,$\frac{π}{2}$)

分析 利用两角和正弦公式求出tanα,再根据α的范围和正弦函数的性质,求出tanα的范围,由正切函数的性质结合选项可得.

解答 解:∵0<α<$\frac{π}{2}$,∴$\frac{π}{4}$<α+$\frac{π}{4}$<$\frac{3π}{4}$,∴$\frac{\sqrt{2}}{2}$<sin(α+$\frac{π}{4}$)≤1,
由题意知tanα=sinα+cosα=$\sqrt{2}$sin(α+$\frac{π}{4}$)∈(1,$\sqrt{2}$],
又tan$\frac{π}{3}$=$\sqrt{3}$>$\sqrt{2}$,∴α∈($\frac{π}{4}$,$\frac{π}{3}$)
故选:C.

点评 本题考查正弦函数和正切函数的性质应用,涉及和差角的三角函数公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=(sinx+$\sqrt{3}$cosx)2-2.
(1)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的单调递增区间;
(2)若x∈[-$\frac{π}{6}$,$\frac{π}{3}$],求函数g(x)=$\frac{1}{2}$f2(x)-f(x+$\frac{π}{4}$)-1的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=log${\;}_{\frac{1}{2}}$(x-1)+1.
(1)若f(x)=3,求x的值;
(2)若f(x)≥1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC的顶点A(1,-1),B(2,0),C(1,1),求其外接圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}的前n项和为Sn,若S1,2S2,3S3成等差数列,且S4=$\frac{40}{27}$.
(1)求数列{an}的通项公式;
(2)求证:Sn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$1≤lg\frac{x}{y}≤2,2≤lg\frac{x^3}{{\sqrt{y}}}≤3$,求$lg\frac{x^3}{{\root{3}{y}}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若{1,2,3}?⊆A⊆{1,2,3,4,5},则集合A的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“直线x-y+k=0与圆(x-1)2+y2=2有两个不同的交点”的充要条件是(  )
A.k∈(-3,1)B.k∈[-3,1]C.k∈(0,1)D.k∈(-∞,-3)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列语句是命题的是(  )
A.今天天气真好啊!B.你怎么又没交作业?
C.x>2D.?x∈R,x>2

查看答案和解析>>

同步练习册答案