精英家教网 > 高中数学 > 题目详情
在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=AA1=1,D、E分别为棱AB、BC的中点,M为棱AA1上的点.
(1)证明:A1B1⊥C1D;
(2)当AM=
3
2
时,求二面角M-DE-A的大小.
分析:(1))以C为坐标原点建立空间直角坐标系C-xyz,利用
A1B1
C1D
=0.证明A1B1⊥C1D
(2)分别求出平面MDE,平面DEA的一个法向量,利用两个法向量夹角求二面角M-DE-A的大小.
解答:(1)证明:以C为坐标原点建立空间直角坐标系C-xyz,则A1(1,0,1),B1(0,1,1),C1(0,0,1),D(
1
2
1
2
,0),
A1B1
=(-1,1,0),
C1D
=(
1
2
1
2
,-1),则
A1B1
C1D
=0.所以
A1B1
C1D
=0.所以A1B1⊥C1D;   …(6分)
(2)解:M(1,0,
3
2
),E(0,
1
2
,0),
ED
=(
1
2
,0,0),
ME
=(-1,
1
2
,-
3
2
)

n
=(x,y,z)为平面MDE的一个法向量.则
n
ED
=0
n
ME
=0
1
2
x=0
-x+
1
2
y-
3
2
z=0
,令y=
3
,则x=0,z=1,所以
n
=(0,
3
,1)
CC1
=(0,0,1)为平面DEA的一个法向量,所以cos<
n
CC1
>=
n
CC1
|n|
|CC1
|
=
1
2

所以二面角M-DE-A的大小为
π
3
点评:本题考查空间直线和直线的位置关系,二面角大小求解.考查逻辑思维、空间想象能力、论证计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,已知AA′=4,AC=BC=2,∠ACB=90°,D是AB的中点.
(Ⅰ)求证:CD⊥AB′;
(Ⅱ)求二面角A′-AB′-C的大小;
(Ⅲ)求直线B′D与平面AB′C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)如图,在直三棱柱ABC-A′B′C′中,AB=BC=CA=a,AA′=
2
a
,则AB′与侧面AC′所成角的大小为
30°
30°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A′B′C′中,AA′=AB=BC=1,∠ABC=90°.棱A′C′上有两个动点E,F,且EF=a (a为常数).
(Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直;
(Ⅱ)判断三棱锥B-CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直线B′C与平面ABC成30°角.
(1)求证:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,点D是BC的中点,∠ACB=90°,AC=BC=1,AA′=2,
(1)欲过点A′作一截面与平面AC'D平行,问应当怎样画线,写出作法,并说明理由;
(2)求异面直线BA′与 C′D所成角的余弦值.

查看答案和解析>>

同步练习册答案