分析 (1)由a1=1,且an+1=$\frac{{a}_{n}+4}{{a}_{n}+1}$(n∈N*),运用代入法,计算可得a2,a3.
(2)利用$\frac{{a}_{n+1}+2}{{a}_{n+1}-2}$=$\frac{3({a}_{n}+2)}{-({a}_{n}-2)}$,可得数列{$\frac{{a}_{n}+2}{{a}_{n}-2}$}是等比数列,首项为-3,公比为-3,再由等比数列的通项公式可得an,再由不等式的性质即可证明.
解答 解:(1)∵a1=1,且an+1=$\frac{{a}_{n}+4}{{a}_{n}+1}$(n∈N*).
∴a2=$\frac{{a}_{1}+4}{{a}_{1}+1}$=$\frac{5}{2}$,a3=$\frac{{a}_{2}+4}{{a}_{2}+1}$=$\frac{13}{7}$.
(2)证明:$\frac{{a}_{n+1}+2}{{a}_{n+1}-2}$=$\frac{\frac{{a}_{n}+4}{{a}_{n}+1}+2}{\frac{{a}_{n}+4}{{a}_{n}+1}-2}$=$\frac{3({a}_{n}+2)}{-({a}_{n}-2)}$,
∴数列{$\frac{{a}_{n}+2}{{a}_{n}-2}$}是等比数列,首项为-3,公比为-3.
∴$\frac{{a}_{n}+2}{{a}_{n}-2}$=(-3)n,
解得an=2+$\frac{4}{(-3)^{n}-1}$,
∴a2n-1=2-$\frac{4}{{3}^{2n-1}+1}$<2-$\frac{4}{{3}^{2n+1}+1}$=a2n+1<2.
点评 本题考查了递推关系、等比数列的通项公式、不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1193 | B. | 1359 | C. | 2718 | D. | 3413 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | 30 | C. | 40 | D. | 50 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com