精英家教网 > 高中数学 > 题目详情
11.已知数列{an}的首项为a1=1,且an+1=$\frac{{a}_{n}+4}{{a}_{n}+1}$,(n∈N*).
(I)求a2,a3的值.
(2)证明:a2n-1<a2n+1<2.

分析 (1)由a1=1,且an+1=$\frac{{a}_{n}+4}{{a}_{n}+1}$(n∈N*),运用代入法,计算可得a2,a3
(2)利用$\frac{{a}_{n+1}+2}{{a}_{n+1}-2}$=$\frac{3({a}_{n}+2)}{-({a}_{n}-2)}$,可得数列{$\frac{{a}_{n}+2}{{a}_{n}-2}$}是等比数列,首项为-3,公比为-3,再由等比数列的通项公式可得an,再由不等式的性质即可证明.

解答 解:(1)∵a1=1,且an+1=$\frac{{a}_{n}+4}{{a}_{n}+1}$(n∈N*).
∴a2=$\frac{{a}_{1}+4}{{a}_{1}+1}$=$\frac{5}{2}$,a3=$\frac{{a}_{2}+4}{{a}_{2}+1}$=$\frac{13}{7}$.
(2)证明:$\frac{{a}_{n+1}+2}{{a}_{n+1}-2}$=$\frac{\frac{{a}_{n}+4}{{a}_{n}+1}+2}{\frac{{a}_{n}+4}{{a}_{n}+1}-2}$=$\frac{3({a}_{n}+2)}{-({a}_{n}-2)}$,
∴数列{$\frac{{a}_{n}+2}{{a}_{n}-2}$}是等比数列,首项为-3,公比为-3.
∴$\frac{{a}_{n}+2}{{a}_{n}-2}$=(-3)n
解得an=2+$\frac{4}{(-3)^{n}-1}$,
∴a2n-1=2-$\frac{4}{{3}^{2n-1}+1}$<2-$\frac{4}{{3}^{2n+1}+1}$=a2n+1<2.

点评 本题考查了递推关系、等比数列的通项公式、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(-1,1)的密度曲线在正方形內的部分)的点的个数的估计值为(  )
A.1193B.1359C.2718D.3413

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知点$(2,\frac{1}{2}+2ln2)$在函数f(x)=$\frac{a}{x}$+2ln x的图象上
(1)求参数a的值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若等比数列{an}的各项均为正数,且a10a11+a9a12=2e3(e为自然对数的底数),则lna1+lna2+…+lna20=(  )
A.20B.30C.40D.50

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知椭圆焦点在y轴上,且过(0.,2)和(1,0)两个点,则这个椭圆的标准方程为$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{1}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列命题中,正确的命题有②④.
①回归直线$\hat y=\hat bx+\hat a$恒过样本点的中心$(\overline x,\overline y)$,且至少过一个样本点;
②将一组数据的每个数据都加一个相同的常数后,方差不变;
③用相关指数R2来刻画回归效果,R2越接近0,说明模型的拟合效果越好;
④用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第一组中用抽签法确定的号码为6号.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知sinA=2sinB,c=$\frac{3}{2}$b.
(Ⅰ)求sinA的值;
(Ⅱ)若△ABC的面积为3$\sqrt{15}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知圆锥的底面半径为4,高为9,则该圆锥的体积为48π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.B.在△ABC中,角A,B,C的对边分别为a,b,c,已知(2c-a)cosB=b(cosA-2cosC).
(1)求$\frac{a}{c}$的值;
(2)若$b=2,cosB=\frac{1}{4}$,求△ABC的面积.

查看答案和解析>>

同步练习册答案