分析 根据 2n=${C}_{n}^{0}$+${C}_{n}^{1}$+${C}_{n}^{2}$+…+${C}_{n}^{n}$≥${C}_{n}^{0}$+${C}_{n}^{1}$+${C}_{n}^{2}$=1+n+$\frac{n(n-1)}{2}$,两边同时乘以2,化简可得要证的不等式.
解答 证明:∵2n=(1+1)n=${C}_{n}^{0}$+${C}_{n}^{1}$+${C}_{n}^{2}$+…+${C}_{n}^{n}$≥${C}_{n}^{0}$+${C}_{n}^{1}$+${C}_{n}^{2}$=1+n+$\frac{n(n-1)}{2}$,
∴2n≥1+n+$\frac{{n}^{2}-n}{2}$,∴2n+1≥n2+n+2.
点评 本题主要考查二项式定理的应用,组合数的计算公式,用放缩法证明不等式,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 7 | C. | 6 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c<a<b | B. | a<b<c | C. | b<c<a | D. | a<c<b |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com