精英家教网 > 高中数学 > 题目详情
13.观察下列式子:1$+\frac{1}{{2}^{2}}<\frac{3}{2}$,1$+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}<\frac{5}{4}$,1$+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}<\frac{7}{8}$…,由此可归纳出的一般结论是$1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}+…+\frac{1}{{(n+1)}^{2}}<\frac{2n+1}{{2}^{n}}$.

分析 利用已知条件,找出规律,然后归纳出的一般结论.

解答 解:下列式子:
1$+\frac{1}{{2}^{2}}<\frac{3}{2}$,
1$+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}<\frac{5}{4}$,
1$+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}<\frac{7}{8}$,
…,
这些不等式的特征是左侧比不等式的个数多一个数,分母是自然数的平方,法则是1的分式的和,右侧分母是2的自然数的幂,分子是第几个不等式的序号的2倍加1.
归纳出的一般结论是:$1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}+…+\frac{1}{({n+1)}^{2}}<\frac{2n+1}{{2}^{n}}$.
故答案为:$1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}+…+\frac{1}{{(n+1)}^{2}}<\frac{2n+1}{{2}^{n}}$

点评 本题考查归纳推理,找出表达式的规律是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知z1,z2是复数,下列结论错误的是(  )
A.若|z1-z2|=0,则$\overline{{z}_{1}}$=$\overline{{z}_{2}}$B.若 z1=$\overline{{z}_{2}}$,则$\overline{{z}_{1}}$=z2
C.若|z1|=|z2|,则z1•$\overline{{z}_{1}}$=z2$\overline{{z}_{2}}$D.若|z1|=|z2|,则z12=z22

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+|x-a|+1,x∈R,
(1)当a=0时,判断函数f(x)的奇偶性;
(2)当$a=\frac{1}{2}$时,求函数f(x)的单调区间;
(3)当$a≥-\frac{1}{2}$时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.应用二项式定理证明:2n+1≥n2+n+2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若复数z满足|z-1-2i|=2,则|z+1|的最小值为2$\sqrt{2}-2$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.“x>1”是“x≠1”的充分不必要条件.(请在“充要”、“充分不必要”、“必要不充分”、“既不充分也不必要”中选择一个合适的填空)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点A(-4,1),B(3,-1),若直线y=kx+2与线段AB恒有公共点,则实数k的取值范围是$(-∞,-1]∪[\frac{1}{4},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某项方案的认定,要求在三名主任委员中至少有二人同意,并且在其余六名普通委员中至少有三人同意,此项方案才能被通过,已知某方案仅六人同意且通过,则共有65种不同的通过方案.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=3x2-x+m,g(x)=lnx.
(1)若函数f(x)与g(x)的图象在x=x0处的切线平行,求x0的值;
(2)当曲线y=f(x)与y=g(x)有公切线时,求实数m的取值范围.

查看答案和解析>>

同步练习册答案