精英家教网 > 高中数学 > 题目详情
3.已知f(x)=3x2-x+m,g(x)=lnx.
(1)若函数f(x)与g(x)的图象在x=x0处的切线平行,求x0的值;
(2)当曲线y=f(x)与y=g(x)有公切线时,求实数m的取值范围.

分析 (1)由f(x)=3x2-x+m,g(x)=lnx,知x>0,f′(x)=6x-1,g′(x)=$\frac{1}{x}$,由函数f(x)与g(x)的图象在x=x0处的切线平行,知6x0-1=$\frac{1}{{x}_{0}}$,由此能求出x0的值;
(2)公切线的存在问题转化为m=$3{{x}_{1}}^{2}-ln(6{x}_{1}-1)-1$有解的问题即可.

解答 解:(1)∵f(x)=3x2-x+m,g(x)=lnx,
∴x>0,f′(x)=6x-1,g′(x)=$\frac{1}{x}$,
∵函数f(x)与g(x)的图象在x=x0处的切线平行,
∴6x0-1=$\frac{1}{{x}_{0}}$,
解得x0=-$\frac{1}{3}$(舍),x0=$\frac{1}{2}$.
故x0=$\frac{1}{2}$…(4分)
(2)设两曲线的公切线为l,切点分别为A(x1,y1),B(x2,y2),
则$\frac{3{{x}_{1}}^{2}-{x}_{1}+m-ln{x}_{2}}{{x}_{1}-{x}_{2}}$=6x1-1=$\frac{1}{{x}_{2}}$,化简消去x2得m=$3{{x}_{1}}^{2}-ln(6{x}_{1}-1)-1$,
于是公切线的存在问题转化为上面方程有解的问题,
令h(x)=3x2-ln(6x-1)-1,则h′(x)=$\frac{6(2x-1)(3x+1)}{6x-1}$(其中x>$\frac{1}{6}$),
由此x=$\frac{1}{2}$时,[h(x)]min=h($\frac{1}{2}$)=-$\frac{1}{4}$-ln2,
∴m≥-$\frac{1}{4}$-ln2时,曲线y=f(x)与y=g(x)有公切线…(12分)

点评 本题考查导数的几何意义的求法,考查函数的最小值,考查学生分析解决问题的能力,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.观察下列式子:1$+\frac{1}{{2}^{2}}<\frac{3}{2}$,1$+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}<\frac{5}{4}$,1$+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}<\frac{7}{8}$…,由此可归纳出的一般结论是$1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}+…+\frac{1}{{(n+1)}^{2}}<\frac{2n+1}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ),0<α<β<$\frac{π}{2}$,且$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{4}{5}$,tanβ=$\frac{4}{3}$,则tanα=$\frac{7}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a=2sin13°cos13°,b=$\frac{2tan76°}{1+ta{n}^{2}76°}$,c=$\sqrt{\frac{1-cos50°}{2}}$,则有(  )
A.c<a<bB.a<b<cC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求复数(1+$\sqrt{3}$i)102的代数形式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在(x-$\sqrt{2}$)10(x+$\sqrt{2}$)10展开式中,x14的系数为-960.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知i是虚数单位,复数z=$\frac{2-i}{1+i}$的虚部是-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知复数z1=m+ni,z2=2-2i和z=x+yi,设z=$\overline{{z}_{1}}$i-z2,m,n,x,y∈R.若复数z1的对应点M(m,n)在曲线y=$\frac{1}{2}$(x+2)2+$\frac{5}{2}$上运动,求复数z所对应的点P(x,y)的轨迹C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校高中三个年级共有学生1800名,各年级男生、女生的人数如表:
高一年级高二年级高三年级
男生290b344
女生260ca
已知在高中学生中随机抽取一名同学时,抽到高三年级女生的概率为0.17.
(1)求a的值;
(2)现用分层抽样的方法在全校抽取60名学生,则在高二年级应抽取多少名学生?
(3)已知b≥260,c≥200,求高二年级男生比女生多的概率.

查看答案和解析>>

同步练习册答案