精英家教网 > 高中数学 > 题目详情
2.某项方案的认定,要求在三名主任委员中至少有二人同意,并且在其余六名普通委员中至少有三人同意,此项方案才能被通过,已知某方案仅六人同意且通过,则共有65种不同的通过方案.

分析 由同意分两类,第一类主任委员2人,普通委员4名,第二类主任委员3人,根据分类计数原理可得.

解答 解:第一类主任委员2人,普通委员4名,故有C32C64=45种,
第二类主任委员3人,普通委员3名,故有C33C63=20种,
根据分类计数原理,共有45+20=65种,
故答案为:65.

点评 本题考查了分类计数原理,关键是分类,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow a$=(4,2),向量$\overrightarrow b$=(x,3),且$\overrightarrow a∥\overrightarrow b$,那么x等于(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.观察下列式子:1$+\frac{1}{{2}^{2}}<\frac{3}{2}$,1$+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}<\frac{5}{4}$,1$+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}<\frac{7}{8}$…,由此可归纳出的一般结论是$1+\frac{1}{{2}^{2}}+\frac{1}{{3}^{2}}+\frac{1}{{4}^{2}}+…+\frac{1}{{(n+1)}^{2}}<\frac{2n+1}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.从3男2女五人中选出3人组成一个工作小组,则至少含有1男1女的不同选法为(  )
A.18B.9C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知奇函数f(x)在区间(-∞,+∞)上是单调递减函数,α,β,γ∈R且α+β>0,β+γ>0,γ+α>0,试说明f(α)+f(β)+f(γ)的值与0的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.不等式|x+1|+|2x-1|<3的解集为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ),0<α<β<$\frac{π}{2}$,且$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{4}{5}$,tanβ=$\frac{4}{3}$,则tanα=$\frac{7}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a=2sin13°cos13°,b=$\frac{2tan76°}{1+ta{n}^{2}76°}$,c=$\sqrt{\frac{1-cos50°}{2}}$,则有(  )
A.c<a<bB.a<b<cC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知复数z1=m+ni,z2=2-2i和z=x+yi,设z=$\overline{{z}_{1}}$i-z2,m,n,x,y∈R.若复数z1的对应点M(m,n)在曲线y=$\frac{1}{2}$(x+2)2+$\frac{5}{2}$上运动,求复数z所对应的点P(x,y)的轨迹C的方程.

查看答案和解析>>

同步练习册答案